Warnings, Cautions, and Notes
as Used in this Publication

Warning

Warning notices are used in this publication to emphasize that hazardous voltages, currents, temperatures, or other conditions that could cause personal injury exist in this equipment or may be associated with its use.

In situations where inattention could cause either personal injury or damage to equipment, a Warning notice is used.

Caution

Caution notices are used where equipment might be damaged if care is not taken.

Note

Notes merely call attention to information that is especially significant to understanding and operating the equipment.

This document is based on information available at the time of its publication. While efforts have been made to be accurate, the information contained herein does not purport to cover all details or variations in hardware or software, nor to provide for every possible contingency in connection with installation, operation, or maintenance. Features may be described herein which are not present in all hardware and software systems. GE Fanuc Automation assumes no obligation of notice to holders of this document with respect to changes subsequently made.

GE Fanuc Automation makes no representation or warranty, expressed, implied, or statutory with respect to, and assumes no responsibility for the accuracy, completeness, sufficiency, or usefulness of the information contained herein. No warranties of merchantability or fitness for purpose shall apply.

©Copyright 2002 GE Fanuc Automation North America, Inc.
All Rights Reserved.
This section describes the safety precautions related to the use of CNC units. It is essential that these precautions be observed by users to ensure the safe operation of machines equipped with a CNC unit (all descriptions in this section assume this configuration). Note that some precautions are related only to specific functions, and thus may not be applicable to certain CNC units.

Users must also observe the safety precautions related to the machine, as described in the relevant manual supplied by the machine tool builder. Before attempting to operate the machine or create a program to control the operation of the machine, the operator must become fully familiar with the contents of this manual and relevant manual supplied by the machine tool builder.

Contents

1. DEFINITION OF WARNING, CAUTION, AND NOTE s–2
2. GENERAL WARNINGS AND CAUTIONS s–3
3. WARNINGS AND CAUTIONS RELATED TO PROGRAMMING s–5
4. WARNINGS AND CAUTIONS RELATED TO HANDLING s–7
5. WARNINGS RELATED TO DAILY MAINTENANCE s–9
This manual includes safety precautions for protecting the user and preventing damage to the machine. Precautions are classified into Warning and Caution according to their bearing on safety. Also, supplementary information is described as a Note. Read the Warning, Caution, and Note thoroughly before attempting to use the machine.

WARNING

Applied when there is a danger of the user being injured or when there is a danger of both the user being injured and the equipment being damaged if the approved procedure is not observed.

CAUTION

Applied when there is a danger of the equipment being damaged, if the approved procedure is not observed.

NOTE

The Note is used to indicate supplementary information other than Warning and Caution.

☑ Read this manual carefully, and store it in a safe place.
GENERAL WARNINGS AND CAUTIONS

WARNING

1. Never attempt to machine a workpiece without first checking the operation of the machine. Before starting a production run, ensure that the machine is operating correctly by performing a trial run using, for example, the single block, feedrate override, or machine lock function or by operating the machine with neither a tool nor workpiece mounted. Failure to confirm the correct operation of the machine may result in the machine behaving unexpectedly, possibly causing damage to the workpiece and/or machine itself, or injury to the user.

2. Before operating the machine, thoroughly check the entered data. Operating the machine with incorrectly specified data may result in the machine behaving unexpectedly, possibly causing damage to the workpiece and/or machine itself, or injury to the user.

3. Ensure that the specified feedrate is appropriate for the intended operation. Generally, for each machine, there is a maximum allowable feedrate. The appropriate feedrate varies with the intended operation. Refer to the manual provided with the machine to determine the maximum allowable feedrate. If a machine is run at other than the correct speed, it may behave unexpectedly, possibly causing damage to the workpiece and/or machine itself, or injury to the user.

4. When using a tool compensation function, thoroughly check the direction and amount of compensation. Operating the machine with incorrectly specified data may result in the machine behaving unexpectedly, possibly causing damage to the workpiece and/or machine itself, or injury to the user.

5. The parameters for the CNC and PMC are factory-set. Usually, there is no need to change them. When, however, there is no alternative other than to change a parameter, ensure that you fully understand the function of the parameter before making any change. Failure to set a parameter correctly may result in the machine behaving unexpectedly, possibly causing damage to the workpiece and/or machine itself, or injury to the user.

6. Immediately after switching on the power, do not touch any of the keys on the MDI panel until the position display or alarm screen appears on the CNC unit. Some of the keys on the MDI panel are dedicated to maintenance or other special operations. Pressing any of these keys may place the CNC unit in other than its normal state. Starting the machine in this state may cause it to behave unexpectedly.

7. The operator’s manual and programming manual supplied with a CNC unit provide an overall description of the machine’s functions, including any optional functions. Note that the optional functions will vary from one machine model to another. Therefore, some functions described in the manuals may not actually be available for a particular model. Check the specification of the machine if in doubt.
8. Some functions may have been implemented at the request of the machine–tool builder. When using such functions, refer to the manual supplied by the machine–tool builder for details of their use and any related cautions.

NOTE

Programs, parameters, and macro variables are stored in nonvolatile memory in the CNC unit. Usually, they are retained even if the power is turned off. Such data may be deleted inadvertently, however, or it may prove necessary to delete all data from nonvolatile memory as part of error recovery.

To guard against the occurrence of the above, and assure quick restoration of deleted data, backup all vital data, and keep the backup copy in a safe place.
3 WARNINGS AND CAUTIONS RELATED TO PROGRAMMING

This section covers the major safety precautions related to programming. Before attempting to perform programming, read the supplied operator’s manual and programming manual carefully such that you are fully familiar with their contents.

WARNING

1. **Coordinate system setting**

 If a coordinate system is established incorrectly, the machine may behave unexpectedly as a result of the program issuing an otherwise valid move command.
 Such an unexpected operation may damage the tool, the machine itself, the workpiece, or cause injury to the user.

2. **Positioning by nonlinear interpolation**

 When performing positioning by nonlinear interpolation (positioning by nonlinear movement between the start and end points), the tool path must be carefully confirmed before performing programming.
 Positioning involves rapid traverse. If the tool collides with the workpiece, it may damage the tool, the machine itself, the workpiece, or cause injury to the user.

3. **Function involving a rotation axis**

 When programming polar coordinate interpolation or normal–direction (perpendicular) control, pay careful attention to the speed of the rotation axis. Incorrect programming may result in the rotation axis speed becoming excessively high, such that centrifugal force causes the chuck to lose its grip on the workpiece if the latter is not mounted securely.
 Such mishap is likely to damage the tool, the machine itself, the workpiece, or cause injury to the user.

4. **Inch/metric conversion**

 Switching between inch and metric inputs does not convert the measurement units of data such as the workpiece origin offset, parameter, and current position. Before starting the machine, therefore, determine which measurement units are being used. Attempting to perform an operation with invalid data specified may damage the tool, the machine itself, the workpiece, or cause injury to the user.

5. **Constant surface speed control**

 When an axis subject to constant surface speed control approaches the origin of the workpiece coordinate system, the spindle speed may become excessively high. Therefore, it is necessary to specify a maximum allowable speed. Specifying the maximum allowable speed incorrectly may damage the tool, the machine itself, the workpiece, or cause injury to the user.
WARNING

6. Stroke check

After switching on the power, perform a manual reference position return as required. Stroke check is not possible before manual reference position return is performed. Note that when stroke check is disabled, an alarm is not issued even if a stroke limit is exceeded, possibly damaging the tool, the machine itself, the workpiece, or causing injury to the user.

7. Tool post interference check

A tool post interference check is performed based on the tool data specified during automatic operation. If the tool specification does not match the tool actually being used, the interference check cannot be made correctly, possibly damaging the tool or the machine itself, or causing injury to the user. After switching on the power, or after selecting a tool post manually, always start automatic operation and specify the tool number of the tool to be used.

8. Absolute/incremental mode

If a program created with absolute values is run in incremental mode, or vice versa, the machine may behave unexpectedly.

9. Plane selection

If an incorrect plane is specified for circular interpolation, helical interpolation, or a canned cycle, the machine may behave unexpectedly. Refer to the descriptions of the respective functions for details.

10. Torque limit skip

Before attempting a torque limit skip, apply the torque limit. If a torque limit skip is specified without the torque limit actually being applied, a move command will be executed without performing a skip.

11. Programmable mirror image

Note that programmed operations vary considerably when a programmable mirror image is enabled.

12. Compensation function

If a command based on the machine coordinate system or a reference position return command is issued in compensation function mode, compensation is temporarily canceled, resulting in the unexpected behavior of the machine. Before issuing any of the above commands, therefore, always cancel compensation function mode.
This section presents safety precautions related to the handling of machine tools. Before attempting to operate your machine, read the supplied operator’s manual and programming manual carefully, such that you are fully familiar with their contents.

WARNING

1. **Manual operation**
 When operating the machine manually, determine the current position of the tool and workpiece, and ensure that the movement axis, direction, and feedrate have been specified correctly. Incorrect operation of the machine may damage the tool, the machine itself, the workpiece, or cause injury to the operator.

2. **Manual reference position return**
 After switching on the power, perform manual reference position return as required. If the machine is operated without first performing manual reference position return, it may behave unexpectedly. Stroke check is not possible before manual reference position return is performed. An unexpected operation of the machine may damage the tool, the machine itself, the workpiece, or cause injury to the user.

3. **Manual numeric command**
 When issuing a manual numeric command, determine the current position of the tool and workpiece, and ensure that the movement axis, direction, and command have been specified correctly, and that the entered values are valid. Attempting to operate the machine with an invalid command specified may damage the tool, the machine itself, the workpiece, or cause injury to the operator.

4. **Manual handle feed**
 In manual handle feed, rotating the handle with a large scale factor, such as 100, applied causes the tool and table to move rapidly. Careless handling may damage the tool and/or machine, or cause injury to the user.

5. **Disabled override**
 If override is disabled (according to the specification in a macro variable) during threading, rigid tapping, or other tapping, the speed cannot be predicted, possibly damaging the tool, the machine itself, the workpiece, or causing injury to the operator.

6. **Origin/preset operation**
 Basically, never attempt an origin/preset operation when the machine is operating under the control of a program. Otherwise, the machine may behave unexpectedly, possibly damaging the tool, the machine itself, the tool, or causing injury to the user.
7. Workpiece coordinate system shift

Manual intervention, machine lock, or mirror imaging may shift the workpiece coordinate system. Before attempting to operate the machine under the control of a program, confirm the coordinate system carefully.

If the machine is operated under the control of a program without making allowances for any shift in the workpiece coordinate system, the machine may behave unexpectedly, possibly damaging the tool, the machine itself, the workpiece, or causing injury to the operator.

8. Software operator’s panel and menu switches

Using the software operator’s panel and menu switches, in combination with the MDI panel, it is possible to specify operations not supported by the machine operator’s panel, such as mode change, override value change, and jog feed commands.

Note, however, that if the MDI panel keys are operated inadvertently, the machine may behave unexpectedly, possibly damaging the tool, the machine itself, the workpiece, or causing injury to the user.

9. Manual intervention

If manual intervention is performed during programmed operation of the machine, the tool path may vary when the machine is restarted. Before restarting the machine after manual intervention, therefore, confirm the settings of the manual absolute switches, parameters, and absolute/incremental command mode.

10. Feed hold, override, and single block

The feed hold, feedrate override, and single block functions can be disabled using custom macro system variable #3004. Be careful when operating the machine in this case.

11. Dry run

Usually, a dry run is used to confirm the operation of the machine. During a dry run, the machine operates at dry run speed, which differs from the corresponding programmed feedrate. Note that the dry run speed may sometimes be higher than the programmed feed rate.

12. Cutter and tool nose radius compensation in MDI mode

Pay careful attention to a tool path specified by a command in MDI mode, because cutter or tool nose radius compensation is not applied. When a command is entered from the MDI to interrupt in automatic operation in cutter or tool nose radius compensation mode, pay particular attention to the tool path when automatic operation is subsequently resumed. Refer to the descriptions of the corresponding functions for details.

13. Program editing

If the machine is stopped, after which the machining program is edited (modification, insertion, or deletion), the machine may behave unexpectedly if machining is resumed under the control of that program. Basically, do not modify, insert, or delete commands from a machining program while it is in use.
5 WARNINGS RELATED TO DAILY MAINTENANCE

WARNING

1. Memory backup battery replacement

When replacing the memory backup batteries, keep the power to the machine (CNC) turned on, and apply an emergency stop to the machine. Because this work is performed with the power on and the cabinet open, only those personnel who have received approved safety and maintenance training may perform this work.

When replacing the batteries, be careful not to touch the high-voltage circuits (marked and fitted with an insulating cover).

Touching the uncovered high-voltage circuits presents an extremely dangerous electric shock hazard.

NOTE

The CNC uses batteries to preserve the contents of its memory, because it must retain data such as programs, offsets, and parameters even while external power is not applied.

If the battery voltage drops, a low battery voltage alarm is displayed on the machine operator’s panel or screen.

When a low battery voltage alarm is displayed, replace the batteries within a week. Otherwise, the contents of the CNC’s memory will be lost.

Refer to the maintenance section of the operator’s manual or programming manual for details of the battery replacement procedure.
2. Absolute pulse coder battery replacement

When replacing the memory backup batteries, keep the power to the machine (CNC) turned on, and apply an emergency stop to the machine. Because this work is performed with the power on and the cabinet open, only those personnel who have received approved safety and maintenance training may perform this work.

When replacing the batteries, be careful not to touch the high-voltage circuits (marked ⚠ and fitted with an insulating cover).

Touching the uncovered high-voltage circuits presents an extremely dangerous electric shock hazard.

NOTE

The absolute pulse coder uses batteries to preserve its absolute position.
If the battery voltage drops, a low battery voltage alarm is displayed on the machine operator’s panel or screen.
When a low battery voltage alarm is displayed, replace the batteries within a week. Otherwise, the absolute position data held by the pulse coder will be lost.
Refer to the maintenance section of the operator’s manual or programming manual for details of the battery replacement procedure.
3. Fuse replacement

For some units, the chapter covering daily maintenance in the operator’s manual or programming manual describes the fuse replacement procedure. Before replacing a blown fuse, however, it is necessary to locate and remove the cause of the blown fuse. For this reason, only those personnel who have received approved safety and maintenance training may perform this work. When replacing a fuse with the cabinet open, be careful not to touch the high-voltage circuits (marked △ and fitted with an insulating cover). Touching an uncovered high-voltage circuit presents an extremely dangerous electric shock hazard.
Table of Contents

SAFETY PRECAUTIONS .. s–1

I. GENERAL ... 3

1. GENERAL ... 3
 1.1 GENERAL FLOW OF OPERATION OF CNC MACHINE TOOL 6
 1.2 CAUTIONS ON READING THIS MANUAL 8
 1.3 CAUTIONS ON VARIOUS KINDS OF DATA 8

II. PROGRAMMING ... 11

1. GENERAL ... 11
 1.1 TOOL MOVEMENT ALONG WORKPIECE PARTS FIGURE–INTERPOLATION 12
 1.2 FEED–FEED FUNCTION ... 14
 1.3 PART DRAWING AND TOOL MOVEMENT 15
 1.3.1 Reference Position (Machine–Specific Position) 15
 1.3.2 Coordinate System on Part Drawing and Coordinate System Specified by CNC – Coordinate System 16
 1.3.3 How to Indicate Command Dimensions for Moving the Tool – Absolute, Incremental Commands ... 19
 1.4 CUTTING SPEED – SPINDLE SPEED FUNCTION 21
 1.5 SELECTION OF TOOL USED FOR VARIOUS MACHINING – TOOL FUNCTION 22
 1.6 COMMAND FOR MACHINE OPERATIONS – MISCELLANEOUS FUNCTION 22
 1.7 PROGRAM CONFIGURATION .. 23
 1.8 COMPENSATION FUNCTION .. 26
 1.9 TOOL MOVEMENT RANGE – STROKE 27

2. CONTROLLED AXES .. 28

 2.1 CONTROLLED AXES .. 29
 2.2 NAMES OF AXES ... 29
 2.3 INCREMENT SYSTEM ... 30
 2.4 MAXIMUM STROKES .. 31

3. PREPARATORY FUNCTION (G FUNCTION) 32

4. INTERPOLATION FUNCTIONS .. 37

 4.1 POSITIONING (G00) .. 38
 4.2 LINEAR INTERPOLATION (G01) ... 40
 4.3 CIRCULAR INTERPOLATION (G02, G03) 41
 4.4 POLAR COORDINATE INTERPOLATION (G12.1, G13.1) 45
 4.5 CYLINDRICAL INTERPOLATION (G07.1) 49
 4.6 CONSTANT LEAD THREADING (G32) 53
 4.7 VARIABLE–LEAD THREAD CUTTING (G34) 57
 4.8 CONTINUOUS THREAD CUTTING .. 58
 4.9 MULTIPLE–THREAD CUTTING .. 59
 4.10 SKIP FUNCTION (G31) .. 61
Table of Contents

4.11 MULTISTAGE SKIP .. 63
4.12 TORQUE LIMIT SKIP (G31 P99) 64

5. FEED FUNCTIONS .. 66
5.1 GENERAL .. 67
5.2 RAPID TRAVERSE .. 68
5.3 CUTTING FEED .. 69
5.4 DWELL (G04) .. 71

6. REFERENCE POSITION .. 72
6.1 REFERENCE POSITION RETURN 73

7. COORDINATE SYSTEM .. 76
7.1 MACHINE COORDINATE SYSTEM 77
7.2 WORKPIECE COORDINATE SYSTEM 78
 7.2.1 Setting a Workpiece Coordinate System 78
 7.2.2 Selecting a Workpiece Coordinate System 80
 7.2.3 Changing Workpiece Coordinate System 81
 7.2.4 Workpiece Coordinate System Preset (G92.1) 83
 7.2.5 Workpiece Coordinate System Shift 85
7.3 LOCAL COORDINATE SYSTEM 86
7.4 PLANE SELECTION .. 88

8. COORDINATE VALUE AND DIMENSION 89
8.1 ABSOLUTE AND INCREMENTAL PROGRAMMING (G90, G91) 90
8.2 INCH/METRIC CONVERSION (G20, G21) 91
8.3 DECIMAL POINT PROGRAMMING 92
8.4 DIAMETER AND RADIUS PROGRAMMING 93

9. SPINDLE SPEED FUNCTION .. 94
9.1 SPECIFYING THE SPINDLE SPEED WITH A CODE 95
9.2 SPECIFYING THE SPINDLE SPEED VALUE DIRECTLY (S5–DIGIT COMMAND) .. 95
9.3 CONSTANT SURFACE SPEED CONTROL (G96, G97) 96
9.4 SPINDLE SPEED FLUCTUATION DETECTION FUNCTION (G25, G26) .. 100
9.5 SPINDLE POSITIONING FUNCTION 103
 9.5.1 Spindle Orientation .. 103
 9.5.2 Spindle Positioning .. 103
 9.5.3 Canceling Spindle Positioning 105

10. TOOL FUNCTION (T FUNCTION) 106
10.1 TOOL SELECTION .. 107
10.2 TOOL LIFE MANAGEMENT ... 108
 10.2.1 Program of Tool Life Data 108
 10.2.2 Counting a Tool Life ... 111
 10.2.3 Specifying a Tool Group in a Machining Program 112

11. AUXILIARY FUNCTION ... 113
11.1 AUXILIARY FUNCTION (M FUNCTION) .. 114
11.2 MULTIPLE M COMMANDS IN A SINGLE BLOCK 115
11.3 THE SECOND AUXILIARY FUNCTIONS (B CODES) 116

12. PROGRAM CONFIGURATION ... 117
12.1 PROGRAM COMPONENTS OTHER THAN PROGRAM SECTIONS 119
12.2 PROGRAM SECTION CONFIGURATION ... 122
12.3 SUBPROGRAM (M98, M99) ... 128

13. FUNCTIONS TO SIMPLIFY PROGRAMMING ... 131
13.1 CANNED CYCLE (G90, G92, G94) ... 132
 13.1.1 Outer Diameter / Internal Diameter Cutting Cycle (G90) 132
 13.1.2 Thread Cutting Cycle (G92) .. 134
 13.1.3 End Face Turning Cycle (G94) ... 137
 13.1.4 How to Use Canned Cycles (G90, G92, G94) 140
13.2 MULTIPLE REPETITIVE CYCLE (G70 – G76) 142
 13.2.1 Stock Removal in Turning (G71) .. 142
 13.2.2 Stock Removal in Facing (G72) .. 146
 13.2.3 Pattern Repeating (G73) ... 147
 13.2.4 Finishing Cycle (G70) ... 148
 13.2.5 End Face Peck Drilling Cycle (G74) ... 151
 13.2.6 Outer Diameter / Internal Diameter Drilling Cycle (G75) 152
 13.2.7 Multiple Thread Cutting Cycle (G76) ... 153
 13.2.8 Notes on Multiple Repetitive Cycle (G70 – G76) 158
13.3 CANNED CYCLE FOR DRILLING (G80 – G89) 159
 13.3.1 Front Drilling Cycle (G83) / Side Drilling Cycle (G87) 163
 13.3.2 Front Tapping Cycle (G84) / Side Tapping Cycle (G88) 166
 13.3.3 Front Boring Cycle (G85) / Side Boring Cycle (G89) 168
 13.3.4 Canned Cycle for Drilling Cancel (G80) 169
 13.3.5 Precautions to be Taken by Operator 170
13.4 CHAMFERING AND CORNER R ... 171
13.5 MIRROR IMAGE FOR DOUBLE TURRET (G68, G69) 174
13.6 DIRECT DRAWING DIMENSIONS PROGRAMMING 175
13.7 RIGID TAPPING ... 180
 13.7.1 Front Face Rigid Tapping Cycle (G84) / Side Face Rigid Tapping Cycle (G88) 181

14. COMPENSATION FUNCTION ... 184
14.1 TOOL OFFSET ... 185
 14.1.1 Tool Geometry Offset and Tool Wear Offset 185
 14.1.2 T Code for Tool Offset ... 186
 14.1.3 Tool Selection ... 186
 14.1.4 Offset Number ... 186
 14.1.5 Offset .. 187
 14.1.6 G53, G28, G30, and G30.1 Commands When Tool Position Offset is Applied 190
14.2 OVERVIEW OF TOOL NOSE RADIUS COMPENSATION 194
 14.2.1 Imaginary Tool Nose .. 194
 14.2.2 Direction of Imaginary Tool Nose ... 196
 14.2.3 Offset Number and Offset Value ... 197
 14.2.4 Work Position and Move Command ... 199
 14.2.5 Notes on Tool Nose Radius Compensation 204
14.3 DETAILS OF TOOL NOSE RADIUS COMPENSATION 207
15. CUSTOM MACRO .. 251
 15.1 VARIABLES .. 252
 15.2 SYSTEM VARIABLES ... 256
 15.3 ARITHMETIC AND LOGIC OPERATION 263
 15.4 MACRO STATEMENTS AND NC STATEMENTS 268
 15.5 BRANCH AND REPETITION 269
 15.5.1 Unconditional Branch (GOTO Statement) 269
 15.5.2 Conditional Branch (IF Statement) 270
 15.5.3 Repetition (WHILE Statement) 271
 15.6 MACRO CALL ... 274
 15.6.1 Simple Call (G65) 275
 15.6.2 Modal Call (G66) 279
 15.6.3 Macro Call Using G Code 281
 15.6.4 Macro Call Using an M Code 282
 15.6.5 Subprogram Call Using an M Code 283
 15.6.6 Subprogram Calls Using a T Code 284
 15.6.7 Sample Program 285
 15.7 PROCESSING MACRO STATEMENTS 287
 15.8 REGISTERING CUSTOM MACRO PROGRAMS 289
 15.9 LIMITATIONS .. 290
 15.10 EXTERNAL OUTPUT COMMANDS 291
 15.11 INTERRUPTION TYPE CUSTOM MACRO 295
 15.11.1 Specification Method 296
 15.11.2 Details of Functions 297

16. PROGRAMMABLE PARAMETER ENTRY (G10) 304

17. MEMORY OPERATION BY SERIES 10/11 TAPE FORMAT 307
 17.1 ADDRESSES AND SPECIFIABLE VALUE RANGE FOR SERIES 10/11 TAPE FORMAT 308
 17.2 EQUAL–LEAD THREADING 309
 17.3 SUBPROGRAM CALLING 310
 17.4 CANNED CYCLE ... 311
 17.5 MULTIPLE REPETITIVE CANNED TURNING CYCLE 312
 17.6 CANNED DRILLING CYCLE FORMATS 314
III. OPERATION

1. GENERAL

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>MANUAL OPERATION</td>
<td>358</td>
</tr>
<tr>
<td>1.2</td>
<td>TOOL MOVEMENT BY PROGRAMMING – AUTOMATIC OPERATION</td>
<td>360</td>
</tr>
<tr>
<td>1.3</td>
<td>AUTOMATIC OPERATION</td>
<td>361</td>
</tr>
<tr>
<td>1.4</td>
<td>TESTING A PROGRAM</td>
<td>363</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Check by Running the Machine</td>
<td>363</td>
</tr>
<tr>
<td>1.4.2</td>
<td>How to View the Position Display Change without Running the Machine</td>
<td>364</td>
</tr>
<tr>
<td>1.5</td>
<td>EDITING A PART PROGRAM</td>
<td>365</td>
</tr>
<tr>
<td>1.6</td>
<td>DISPLAYING AND SETTING DATA</td>
<td>366</td>
</tr>
<tr>
<td>1.7</td>
<td>DISPLAY</td>
<td>369</td>
</tr>
<tr>
<td>1.7.1</td>
<td>Program Display</td>
<td>369</td>
</tr>
<tr>
<td>1.7.2</td>
<td>Current Position Display</td>
<td>370</td>
</tr>
<tr>
<td>1.7.3</td>
<td>Alarm Display</td>
<td>370</td>
</tr>
<tr>
<td>1.7.4</td>
<td>Parts Count Display, Run Time Display</td>
<td>371</td>
</tr>
<tr>
<td>1.7.5</td>
<td>Graphic Display (See Section III–12)</td>
<td>372</td>
</tr>
<tr>
<td>1.8</td>
<td>DATA OUTPUT</td>
<td>373</td>
</tr>
</tbody>
</table>

2. OPERATIONAL DEVICES

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>SETTING AND DISPLAY UNITS</td>
<td>375</td>
</tr>
<tr>
<td>2.1.1</td>
<td>7.2”/8.4” LCD–Mounted Type CNC Control Unit</td>
<td>376</td>
</tr>
<tr>
<td>2.1.2</td>
<td>9.5”/10.4” LCD–Mounted Type CNC Control Unit</td>
<td>376</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Stand–Alone Type Small MDI Unit</td>
<td>377</td>
</tr>
<tr>
<td>2.1.4</td>
<td>Stand–Alone Type Standard MDI Unit</td>
<td>378</td>
</tr>
<tr>
<td>2.1.5</td>
<td>Stand–Alone Type 61 Full–Key MDI Unit</td>
<td>379</td>
</tr>
<tr>
<td>2.2</td>
<td>EXPLANATION OF THE KEYBOARD</td>
<td>380</td>
</tr>
<tr>
<td>2.3</td>
<td>FUNCTION KEYS AND SOFT KEYS</td>
<td>382</td>
</tr>
<tr>
<td>2.3.1</td>
<td>General Screen Operations</td>
<td>382</td>
</tr>
</tbody>
</table>
Table of Contents

3. MANUAL OPERATION .. 409
 3.1 MANUAL REFERENCE POSITION RETURN 410
 3.2 JOG FEED .. 412
 3.3 INCREMENTAL FEED ... 414
 3.4 MANUAL HANDLE FEED ... 415
 3.5 MANUAL ABSOLUTE ON AND OFF 418

4. AUTOMATIC OPERATION ... 423
 4.1 MEMORY OPERATION ... 424
 4.2 MDI OPERATION .. 427
 4.3 PROGRAM RESTART ... 430
 4.4 SCHEDULING FUNCTION .. 438
 4.5 SUBPROGRAM CALL FUNCTION (M198) 443
 4.6 MANUAL HANDLE INTERRUPTION 445
 4.7 MIRROR IMAGE ... 448
 4.8 MANUAL INTERVENTION AND RETURN 450
 4.9 DNC OPERATION .. 452
 4.10 DNC OPERATION WITH MEMORY CARD 455
 4.10.1 Specification ... 455
 4.10.2 Operations .. 456
 4.10.2.1 DNC operation ... 456
 4.10.2.2 Subprogram call (M198) 457
 4.10.3 LIMITATION and NOTES 458
 4.10.4 PARAMETER .. 458
 4.10.5 Connecting PCMCIA Card Attachment 459
 4.10.5.1 Specification number 459
 4.10.5.2 Assembling .. 459
 4.10.6 Recommended Memory Card 461

5. TEST OPERATION .. 462
 5.1 MACHINE LOCK AND AUXILIARY FUNCTION LOCK 463
 5.2 FEEDRATE OVERRIDE .. 465
 5.3 RAPID TRAVERSE OVERRIDE 466
 5.4 DRY RUN ... 467
 5.5 SINGLE BLOCK ... 468
Table of Contents

6. SAFETY FUNCTIONS
- 6.1 EMERGENCY STOP .. 472
- 6.2 OVERTRAVEL ... 473
- 6.3 STORED STROKE CHECK .. 474
- 6.4 CHUCK AND TAILSTOCK BARRIERS 478

7. ALARM AND SELF–DIAGNOSIS FUNCTIONS
- 7.1 ALARM DISPLAY .. 486
- 7.2 ALARM HISTORY DISPLAY 488
- 7.3 CHECKING BY SELF–DIAGNOSTIC SCREEN 489

8. DATA INPUT/OUTPUT
- 8.1 FILES ... 493
- 8.2 FILE SEARCH .. 495
- 8.3 FILE DELETION ... 497
- 8.4 PROGRAM INPUT/OUTPUT 498
 - 8.4.1 Inputting a Program 498
 - 8.4.2 Outputting a Program 501
- 8.5 OFFSET DATA INPUT AND OUTPUT 503
 - 8.5.1 Inputting Offset Data 503
 - 8.5.2 Outputting Offset Data 504
- 8.6 INPUTTING AND OUTPUTTING PARAMETERS AND PITCH ERROR COMPENSATION DATA .. 505
 - 8.6.1 Inputting Parameters 505
 - 8.6.2 Outputting Parameters 506
 - 8.6.3 Inputting Pitch Error Compensation Data 507
 - 8.6.4 Outputting Pitch Error Compensation Data 508
- 8.7 INPUTTING/OUTPUTTING CUSTOM MACRO COMMON VARIABLES .. 509
 - 8.7.1 Inputting Custom Macro Common Variables 509
 - 8.7.2 Outputting Custom Macro Common Variable 510
- 8.8 DISPLAYING DIRECTORY OF FLOPPY DISK 511
 - 8.8.1 Displaying the Directory 512
 - 8.8.2 Reading Files .. 515
 - 8.8.3 Outputting Programs 516
 - 8.8.4 Deleting Files ... 517
- 8.9 OUTPUTTING A PROGRAM LIST FOR A SPECIFIED GROUP .. 519
- 8.10 DATA INPUT/OUTPUT ON THE ALL IO SCREEN 520
 - 8.10.1 Setting Input/Output–Related Parameters 521
 - 8.10.2 Inputting and Outputting Programs 522
 - 8.10.3 Inputting and Outputting Parameters 526
 - 8.10.4 Inputting and Outputting Offset Data 528
 - 8.10.5 Outputting Custom Macro Common Variables 530
 - 8.10.6 Inputting and Outputting Floppy Files 531
 - 8.10.7 Memory Card Input/Output 536
- 8.11 DATA INPUT/OUTPUT USING A MEMORY CARD 545

9. EDITING PROGRAMS ... 557
- 9.1 INSERTING, ALTERING AND DELETING A WORD 558
 - 9.1.1 Word Search ... 559
 - 9.1.2 Heading a Program ... 561
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1.3</td>
<td>Inserting a Word</td>
<td>562</td>
</tr>
<tr>
<td>9.1.4</td>
<td>Altering a Word</td>
<td>563</td>
</tr>
<tr>
<td>9.1.5</td>
<td>Deleting a Word</td>
<td>564</td>
</tr>
<tr>
<td>9.2</td>
<td>DELETING BLOCKS</td>
<td>565</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Deleting a Block</td>
<td>565</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Deleting Multiple Blocks</td>
<td>566</td>
</tr>
<tr>
<td>9.3</td>
<td>PROGRAM NUMBER SEARCH</td>
<td>567</td>
</tr>
<tr>
<td>9.4</td>
<td>SEQUENCE NUMBER SEARCH</td>
<td>568</td>
</tr>
<tr>
<td>9.5</td>
<td>DELETING PROGRAMS</td>
<td>570</td>
</tr>
<tr>
<td>9.5.1</td>
<td>Deleting One Program</td>
<td>570</td>
</tr>
<tr>
<td>9.5.2</td>
<td>Deleting All Programs</td>
<td>570</td>
</tr>
<tr>
<td>9.5.3</td>
<td>Deleting More Than One Program by Specifying a Range</td>
<td>571</td>
</tr>
<tr>
<td>9.6</td>
<td>EXTENDED PART PROGRAM EDITING FUNCTION</td>
<td>572</td>
</tr>
<tr>
<td>9.6.1</td>
<td>Copying an Entire Program</td>
<td>573</td>
</tr>
<tr>
<td>9.6.2</td>
<td>Copying Part of a Program</td>
<td>574</td>
</tr>
<tr>
<td>9.6.3</td>
<td>Moving Part of a Program</td>
<td>575</td>
</tr>
<tr>
<td>9.6.4</td>
<td>Merging a Program</td>
<td>576</td>
</tr>
<tr>
<td>9.6.5</td>
<td>Supplementary Explanation for Copying, Moving and Merging</td>
<td>577</td>
</tr>
<tr>
<td>9.6.6</td>
<td>Replacement of Words and Addresses</td>
<td>579</td>
</tr>
<tr>
<td>9.7</td>
<td>EDITING OF CUSTOM MACROS</td>
<td>581</td>
</tr>
<tr>
<td>9.8</td>
<td>BACKGROUND EDITING</td>
<td>582</td>
</tr>
<tr>
<td>9.9</td>
<td>PASSWORD FUNCTION</td>
<td>583</td>
</tr>
<tr>
<td>10.1</td>
<td>CREATING PROGRAMS USING THE MDI PANEL</td>
<td>586</td>
</tr>
<tr>
<td>10.2</td>
<td>AUTOMATIC INSERTION OF SEQUENCE NUMBERS</td>
<td>587</td>
</tr>
<tr>
<td>10.3</td>
<td>CREATING PROGRAMS IN TEACH IN MODE (PLAYBACK)</td>
<td>589</td>
</tr>
<tr>
<td>11.1.1</td>
<td>Position Display in the Workpiece Coordinate System</td>
<td>600</td>
</tr>
<tr>
<td>11.1.2</td>
<td>Position Display in the Relative Coordinate System</td>
<td>601</td>
</tr>
<tr>
<td>11.1.3</td>
<td>Overall Position Display</td>
<td>603</td>
</tr>
<tr>
<td>11.1.4</td>
<td>Presetting the Workpiece Coordinate System</td>
<td>604</td>
</tr>
<tr>
<td>11.1.5</td>
<td>Actual Feedrate Display</td>
<td>605</td>
</tr>
<tr>
<td>11.1.6</td>
<td>Display of Run Time and Parts Count</td>
<td>607</td>
</tr>
<tr>
<td>11.1.7</td>
<td>Operating Monitor Display</td>
<td>608</td>
</tr>
<tr>
<td>11.2.1</td>
<td>Program Contents Display</td>
<td>611</td>
</tr>
<tr>
<td>11.2.2</td>
<td>Current Block Display Screen</td>
<td>612</td>
</tr>
<tr>
<td>11.2.3</td>
<td>Next Block Display Screen</td>
<td>613</td>
</tr>
<tr>
<td>11.2.4</td>
<td>Program Check Screen</td>
<td>614</td>
</tr>
<tr>
<td>11.2.5</td>
<td>Program Screen for MDI Operation</td>
<td>616</td>
</tr>
<tr>
<td>11.2.6</td>
<td>Displaying the B-axis Operation State</td>
<td>617</td>
</tr>
<tr>
<td>11.3.1</td>
<td>Displaying Memory Used and a List of Programs</td>
<td>619</td>
</tr>
<tr>
<td>11.3.2</td>
<td>Displaying a Program List for a Specified Group</td>
<td>622</td>
</tr>
</tbody>
</table>
11.4 SCREENS DISPLAYED BY FUNCTION KEY

11.4.1 Setting and Displaying the Tool Offset Value .. 626
11.4.2 Direct Input of Tool Offset Value ... 629
11.4.3 Direct Input of Tool Offset Measured B ... 631
11.4.4 Counter Input of Offset value ... 633
11.4.5 Setting the Workpiece Coordinate System Shifting Amount 634
11.4.6 Y Axis Offset .. 636
11.4.7 Displaying and Entering Setting Data ... 639
11.4.8 Sequence Number Comparison and Stop .. 641
11.4.9 Displaying and Setting Run Time, Parts Count, and Time 643
11.4.10 Displaying and Setting the Workpiece Origin Offset Value 645
11.4.11 Direct Input of Measured Workpiece Origin Offsets ... 646
11.4.12 Displaying and Setting Custom Macro Common Variables 648
11.4.13 Displaying and Setting the Software Operator’s Panel 649
11.4.14 Displaying and Setting Tool Life Management Data ... 651
11.4.15 Setting and Displaying B–axis Tool Compensation ... 654

11.5 SCREENS DISPLAYED BY FUNCTION KEY

11.5.1 Displaying and Setting Parameters .. 657
11.5.2 Displaying and Setting Pitch Error Compensation Data 659

11.6 DISPLAYING THE PROGRAM NUMBER, SEQUENCE NUMBER, AND STATUS, AND WARNING MESSAGES FOR DATA SETTING OR INPUT/OUTPUT OPERATION .. 662

11.6.1 Displaying the Program Number and Sequence Number 662
11.6.2 Displaying the Status and Warning for Data Setting or Input/Output Operation ... 663

11.7 SCREENS DISPLAYED BY FUNCTION KEY

11.7.1 External Operator Message History Display .. 665

11.8 CLEARING THE SCREEN ... 667

11.8.1 Erase CRT Screen Display .. 667
11.8.2 Automatic Erase Screen Display ... 668

12. GRAPHICS FUNCTION .. 669

12.1 GRAPHICS DISPLAY .. 670

13. HELP FUNCTION ... 675

14. SCREEN HARDCOPY ... 680

IV. MAINTENANCE

1. METHOD OF REPLACING BATTERY .. 685

1.1 REPLACING BATTERY FOR LCD–MOUNTED TYPE i SERIES 686
1.2 REPLACING THE BATTERY FOR STAND–ALONE TYPE i SERIES 689
1.3 BATTERY IN THE PANEL i (3 VDC) .. 692
1.4 BATTERY FOR SEPARATE ABSOLUTE PULSE CODERS (6 VDC) 694
1.5 BATTERY FOR BUILT–IN ABSOLUTE PULSE CODERS (DC6V) 695

APPENDIX

A. TAPE CODE LIST .. 703
B. LIST OF FUNCTIONS AND TAPE FORMAT ... 706
C. RANGE OF COMMAND VALUE ... 710
D. NOMOGRAPHHS ... 713
 D.1 INCORRECT THREADED LENGTH ... 714
 D.2 SIMPLE CALCULATION OF INCORRECT THREAD LENGTH 716
 D.3 TOOL PATH AT CORNER ... 718
 D.4 RADIUS DIRECTION ERROR AT CIRCLE CUTTING 721
E. STATUS WHEN TURNING POWER ON, WHEN CLEAR AND WHEN RESET ... 722
F. CHARACTER–TO–CODES CORRESPONDENCE TABLE 724
G. ALARM LIST ... 725
I. GENERAL
This manual consists of the following parts:

I. GENERAL
Describes chapter organization, applicable models, related manuals, and notes for reading this manual.

II. PROGRAMMING
Describes each function: Format used to program functions in the NC language, characteristics, and restrictions. When a program is created through conversational automatic programming function, refer to the manual for the conversational automatic programming function (Table1).

III. OPERATION
Describes the manual operation and automatic operation of a machine, procedures for inputting and outputting data, and procedures for editing a program.

IV. MAINTENANCE
Describes procedures for replacing batteries.

APPENDIX
Lists tape codes, valid data ranges, and error codes.

Some functions described in this manual may not be applied to some products. For detail, refer to the DESCRIPTIONS manual (B–63522EN).

This manual does not describe parameters in detail. For details on parameters mentioned in this manual, refer to the manual for parameters (B–63610EN).

This manual describes all optional functions. Look up the options incorporated into your system in the manual written by the machine tool builder.

The models covered by this manual, and their abbreviations are:

<table>
<thead>
<tr>
<th>Product name</th>
<th>Abbreviations</th>
</tr>
</thead>
<tbody>
<tr>
<td>FANUC Series 21i–TB</td>
<td>21i–TB</td>
</tr>
<tr>
<td>FANUC Series 210i–TB</td>
<td>210i–TB</td>
</tr>
</tbody>
</table>
This manual uses the following symbols:

- **IP**
 Indicates a combination of axes such as X__ Y__ Z (used in PROGRAMMING.).

- **;**
 Indicates the end of a block. It actually corresponds to the ISO code LF or EIA code CR.

The following table lists the manuals related to Series 16\textit{i}, Series 18\textit{i}, Series 21\textit{i}, Series 160\textit{i}, Series 180\textit{i}, Series 210\textit{i}–MODEL B. This manual is indicated by an asterisk(*).

<table>
<thead>
<tr>
<th>Manual name</th>
<th>Specification number</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTIONS</td>
<td>B–63522EN</td>
</tr>
<tr>
<td>CONNECTION MANUAL (HARDWARE)</td>
<td>B–63523EN</td>
</tr>
<tr>
<td>CONNECTION MANUAL (FUNCTION)</td>
<td>B–63523EN–1</td>
</tr>
<tr>
<td>OPERATORS MANUAL (16\textit{i}/18\textit{i}/160\textit{i}/180\textit{i}–TB)</td>
<td>B–63524EN</td>
</tr>
<tr>
<td>OPERATOR’S MANUAL (16\textit{i}/18\textit{i}/160\textit{i}/180\textit{i}–MB)</td>
<td>B–63534EN</td>
</tr>
<tr>
<td>OPERATOR’S MANUAL (21\textit{i}/210\textit{i}–TB)</td>
<td>B–63604EN*</td>
</tr>
<tr>
<td>OPERATOR’S MANUAL (21\textit{i}/210\textit{i}–MB)</td>
<td>B–63614EN</td>
</tr>
<tr>
<td>MAINTENANCE MANUAL</td>
<td>B–63525EN</td>
</tr>
<tr>
<td>PARAMETER MANUAL (16\textit{i}/18\textit{i}/160\textit{i}/180\textit{i}–MODEL B)</td>
<td>B–63530EN</td>
</tr>
<tr>
<td>PARAMETER MANUAL (21\textit{i}/210\textit{i}–MODEL B)</td>
<td>B–63610EN</td>
</tr>
<tr>
<td>PROGRAMMING MANUAL</td>
<td></td>
</tr>
<tr>
<td>Macro Compiler/Macro Executor PROGRAMMING MANUAL</td>
<td>B–61803E–1</td>
</tr>
<tr>
<td>FAPT MACRO COMPILER (For Personal Computer) PROGRAMMING MANUAL</td>
<td>B–66102E</td>
</tr>
<tr>
<td>C Language Executor PROGRAMMING MANUAL</td>
<td>B–62443EN–3</td>
</tr>
<tr>
<td>CAP (T series)</td>
<td></td>
</tr>
<tr>
<td>FANUC Super CAP\textit{t} OPERATORS MANUAL</td>
<td>B–63284EN</td>
</tr>
<tr>
<td>FANUC Symbol CAP\textit{t} OPERATOR’S MANUAL</td>
<td>B–63304EN</td>
</tr>
<tr>
<td>MANUAL GUIDE For Lathe PROGRAMMING MANUAL</td>
<td>B–63343EN</td>
</tr>
<tr>
<td>MANUAL GUIDE For Lathe OPERATOR’S MANUAL</td>
<td>B–63344EN</td>
</tr>
<tr>
<td>CAP (M series)</td>
<td></td>
</tr>
<tr>
<td>FANUC Super CAP\textit{m} OPERATOR’S MANUAL</td>
<td>B–63294EN</td>
</tr>
<tr>
<td>MANUAL GUIDE For Milling PROGRAMMING MANUAL</td>
<td>B–63423EN</td>
</tr>
<tr>
<td>MANUAL GUIDE For Milling OPERATOR’S MANUAL</td>
<td>B–63424EN</td>
</tr>
</tbody>
</table>
1. GENERAL

Related manuals of SERVO MOTOR α series

<table>
<thead>
<tr>
<th>Manual name</th>
<th>Specification number</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC SERVO MOTOR α series DESCRIPTIONS</td>
<td>B–65142E</td>
</tr>
<tr>
<td>AC SERVO MOTOR α series PARAMETER MANUAL</td>
<td>B–65150E</td>
</tr>
<tr>
<td>AC SPINDLE MOTOR α series DESCRIPTIONS</td>
<td>B–65152E</td>
</tr>
<tr>
<td>AC SPINDLE MOTOR α series PARAMETER MANUAL</td>
<td>B–65160E</td>
</tr>
<tr>
<td>SERVO AMPLIFIER α series DESCRIPTIONS</td>
<td>B–65162E</td>
</tr>
<tr>
<td>SERVO MOTOR α series MAINTENANCE MANUAL</td>
<td>B–65165E</td>
</tr>
</tbody>
</table>

The following table lists the manuals related to SERVO MOTOR α series

<table>
<thead>
<tr>
<th>Manual name</th>
<th>Specification number</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMC</td>
<td></td>
</tr>
<tr>
<td>PMC Ladder Language PROGRAMMING MANUAL</td>
<td>B–61863E</td>
</tr>
<tr>
<td>PMC C Language PROGRAMMING MANUAL</td>
<td>B–61863E–1</td>
</tr>
<tr>
<td>Network</td>
<td></td>
</tr>
<tr>
<td>FANUC I/O Link–II CONNECTION MANUAL</td>
<td>B–62714EN</td>
</tr>
<tr>
<td>Profibus–DP Board OPERATOR’S MANUAL</td>
<td>B–62924EN</td>
</tr>
<tr>
<td>DeviceNet Board OPERATOR’S MANUAL</td>
<td>B–63404EN</td>
</tr>
<tr>
<td>Ethernet Board/DATA SERVER Board OPERATOR’S MANUAL</td>
<td>B–63354EN</td>
</tr>
</tbody>
</table>
When machining the part using the CNC machine tool, first prepare the program, then operate the CNC machine by using the program.

1) First, prepare the program from a part drawing to operate the CNC machine tool.
 How to prepare the program is described in the Chapter II. PROGRAMMING.

2) The program is to be read into the CNC system. Then, mount the workpieces and tools on the machine, and operate the tools according to the programming. Finally, execute the machining actually.
 How to operate the CNC system is described in the Chapter III. OPERATION.

Before the actual programming, make the machining plan for how to machine the part.
Machining plan
1. Determination of workpieces machining range
2. Method of mounting workpieces on the machine tool
3. Machining sequence in every cutting process
4. Cutting tools and cutting conditions
Decide the cutting method in every cutting process.

<table>
<thead>
<tr>
<th>Cutting process</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutting procedure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Cutting method</td>
<td>Rough</td>
<td>Semi</td>
<td>Finish</td>
</tr>
<tr>
<td>2. Cutting tools</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Cutting conditions</td>
<td>Feedrate</td>
<td>Cutting depth</td>
<td></td>
</tr>
<tr>
<td>4. Tool path</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Prepare the program of the tool path and cutting condition according to the workpiece figure, for each cutting.
1. GENERAL

1.2 CAUTIONS ON READING THIS MANUAL

CAUTION

1. The function of an CNC machine tool system depends not only on the CNC, but on the combination of the machine tool, its magnetic cabinet, the servo system, the CNC, the operator’s panels, etc. It is too difficult to describe the function, programming, and operation relating to all combinations. This manual generally describes these from the stand-point of the CNC. So, for details on a particular CNC machine tool, refer to the manual issued by the machine tool builder, which should take precedence over this manual.

2. Headings are placed in the left margin so that the reader can easily access necessary information. When locating the necessary information, the reader can save time by searching through these headings.

3. This manual describes as many reasonable variations in equipment usage as possible. It cannot address every combination of features, options and commands that should not be attempted. If a particular combination of operations is not described, it should not be attempted.

1.3 CAUTIONS ON VARIOUS KINDS OF DATA

CAUTION

Machining programs, parameters, variables, etc. are stored in the CNC unit internal non-volatile memory. In general, these contents are not lost by the switching ON/OFF of the power. However, it is possible that a state can occur where precious data stored in the non-volatile memory has to be deleted, because of deletions from a maloperation, or by a failure restoration. In order to restore rapidly when this kind of mishap occurs, it is recommended that you create a copy of the various kinds of data beforehand.
II. PROGRAMMING
1. GENERAL
1.1 TOOL MOVEMENT ALONG WORKPIECE PARTS FIGURE—INTERPOLATION

Explanations

- Tool movement along a straight line

The tool moves along straight lines and arcs constituting the workpiece parts figure (See II–4).

Fig. 1.1 (a) Tool movement along the straight line which is parallel to Z–axis

Fig. 1.1 (b) Tool movement along the taper line

Fig. 1.1 (c) Tool movement along an arc
The term interpolation refers to an operation in which the tool moves along a straight line or arc in the way described above. Symbols of the programmed commands G01, G02, ... are called the preparatory function and specify the type of interpolation conducted in the control unit.

(a) Movement along straight line
G01 Z__; X—Z—;

(b) Movement along arc
G03X—Z—;

![Interpolation function diagram](image)

NOTE
Some machines move workpiece (spindle) instead of tools but this manual assumes that tools are moved against workpieces.

- **Thread cutting**

Threads can be cut by moving the tool in synchronization with spindle rotation. In a program, specify the thread cutting function by G32.

![Thread cutting diagram](image)
Movement of the tool at a specified speed for cutting a workpiece is called the feed.

Feedrates can be specified by using actual numerics. For example, the following command can be used to feed the tool 2 mm while the workpiece makes one turn:

\[F2.0 \]

The function of deciding the feed rate is called the feed function (See II–5).
1.3 PART DRAWING AND TOOL MOVEMENT

1.3.1 Reference Position (Machine-Specific Position)

A CNC machine tool is provided with a fixed position. Normally, tool change and programming of absolute zero point as described later are performed at this position. This position is called the reference position.

![Reference position diagram](image)

Fig. 1.3.1 Reference position

Explanations

The tool can be moved to the reference position in two ways:

1. Manual reference position return (See III–3.1)
 Reference position return is performed by manual button operation.

2. Automatic reference position return (See II–6)
 In general, manual reference position return is performed first after the power is turned on. In order to move the tool to the reference position for tool change thereafter, the function of automatic reference position return is used.
1.3.2
Coordinate System on Part Drawing and Coordinate System Specified by CNC – Coordinate System

Explanations

- Coordinate system

The following two coordinate systems are specified at different locations: (See II–7)

1. Coordinate system on part drawing
 The coordinate system is written on the part drawing. As the program data, the coordinate values on this coordinate system are used.

2. Coordinate system specified by the CNC
 The coordinate system is prepared on the actual machine tool. This can be achieved by programming the distance from the current position of the tool to the zero point of the coordinate system to be set.

Fig. 1.3.2 (a) Coordinate system

Fig. 1.3.2 (b) Coordinate system specified by the CNC
The tool moves on the coordinate system specified by the CNC in accordance with the command program generated with respect to the coordinate system on the part drawing, and cuts a workpiece into a shape on the drawing. Therefore, in order to correctly cut the workpiece as specified on the drawing, the two coordinate systems must be set at the same position.

The following method is usually used to define two coordinate systems at the same location.

1. When coordinate zero point is set at chuck face

Methods of setting the two coordinate systems in the same position

![Fig. 1.3.2 (c) Coordinates and dimensions on part drawing](image)

![Fig. 1.3.2 (d) Coordinate system on lathe as specified by CNC](image)
2. When coordinate zero point is set at work end face.

Fig. 1.3.2 (e) Coordinates and dimensions on part drawing

Fig. 1.3.2 (f) Coordinate system on lathe as specified by CNC (made to coincide with the coordinate system on part drawing)
1.3.3

How to Indicate Command Dimensions for Moving the Tool — Absolute, Incremental Commands

Explanations

• Absolute command

Methods of command for moving the tool can be indicated by absolute or incremental designation (See II–8.1).

The tool moves to a point at “the distance from zero point of the coordinate system” that is to the position of the coordinate values.

Command specifying movement from point A to point B

\[G90X30.0Z70.0; \]

Coordinates of point B

Fig. 1.3.3 (a) Absolute command
• **Incremental command**

Specify the distance from the previous tool position to the next tool position.

![Diagram showing incremental command](https://via.placeholder.com/150)

Fig. 1.3.3 (b) Incremental command

• **Diameter programming / radius programming**

Dimensions of the X axis can be set in diameter or in radius. Diameter programming or radius programming is employed independently in each machine.

1. Diameter programming

 In diameter programming, specify the diameter value indicated on the drawing as the value of the X axis.

![Diagram showing diameter programming](https://via.placeholder.com/150)

Fig. 1.3.3 (c) Diameter programming
2. Radius programming
In radius programming, specify the distance from the center of the workpiece, i.e. the radius value as the value of the X axis.

The speed of the tool with respect to the workpiece when the workpiece is cut is called the cutting speed.
As for the CNC, the cutting speed can be specified by the spindle speed in min⁻¹ unit.

The spindle speed is approximately 478 min⁻¹, which is obtained from
N=1000v/πD. Hence the following command is required:
S478 ;
Commands related to the spindle speed are called the spindle speed function (See II–9).
The cutting speed v (m/min) can also be specified directly by the speed value. Even when the workpiece diameter is changed, the CNC changes the spindle speed so that the cutting speed remains constant.
This function is called the constant surface speed control function (See II–9.3).
When drilling, tapping, boring, milling or the like, is performed, it is necessary to select a suitable tool. When a number is assigned to each tool and the number is specified in the program, the corresponding tool is selected.

![Tool number]

When the tool is stored at location 01 of the tool post, the tool can be selected by specifying T0101. This is called the tool function (See II-10).

When machining is actually started, it is necessary to rotate the spindle, and feed coolant. For this purpose, on–off operations of spindle motor and coolant valve should be controlled (See II–11).

![Command for machine operations]

The function of specifying the on–off operations of the components of the machine is called the miscellaneous function. In general, the function is specified by an M code. For example, when M03 is specified, the spindle is rotated clockwise at the specified spindle speed.
A group of commands given to the CNC for operating the machine is called the program. By specifying the commands, the tool is moved along a straight line or an arc, or the spindle motor is turned on and off. In the program, specify the commands in the sequence of actual tool movements.

A group of commands at each step of the sequence is called the block. The program consists of a group of blocks for a series of machining. The number for discriminating each block is called the sequence number, and the number for discriminating each program is called the program number (See II–12).
Explanations

Block

The block and the program have the following configurations.

![Block configuration diagram](image)

Fig. 1.7 (b) Block configuration

A block begins with a sequence number that identifies that block and ends with an end–of–block code.

This manual indicates the end–of–block code by ; (LF in the ISO code and CR in the EIA code).

The contents of the dimension word depend on the preparatory function.

In this manual, the portion of the dimension word may be represent as IP_.

Program

![Program configuration diagram](image)

Fig. 1.7 (c) Program configuration

Normally, a program number is specified after the end–of–block (;) code at the beginning of the program, and a program end code (M02 or M30) is specified at the end of the program.
Main program and subprogram

When machining of the same pattern appears at many portions of a program, a program for the pattern is created. This is called the subprogram. On the other hand, the original program is called the main program. When a subprogram execution command appears during execution of the main program, commands of the subprogram are executed. When execution of the subprogram is finished, the sequence returns to the main program.

[Diagram showing main program and subprograms]
1.8 COMPENSATION FUNCTION

Explanations

- **Machining using the end of cutter – Tool length compensation function**

Usually, several tools are used for machining one workpiece. The tools have different tool length. It is very troublesome to change the program in accordance with the tools. Therefore, the length of each tool used should be measured in advance. By setting the difference between the length of the standard tool and the length of each tool in the CNC (data display and setting: see III–11), machining can be performed without altering the program even when the tool is changed. This function is called tool length compensation.

![Fig. 1.8 Tool offset](image-url)
1.9 TOOL MOVEMENT RANGE – STROKE

Limit switches are installed at the ends of each axis on the machine to prevent tools from moving beyond the ends. The range in which tools can move is called the stroke. Besides the stroke limits, data in memory can be used to define an area which tools cannot enter.

Besides strokes defined with limit switches, the operator can define an area which the tool cannot enter using a program or data in memory. This function is called stroke check.
2. CONTROLLED AXES
2.1 CONTROLLED AXES

<table>
<thead>
<tr>
<th>Item</th>
<th>21i–TB</th>
<th>210i–TB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of basic controlled axes</td>
<td>2 axes</td>
<td></td>
</tr>
<tr>
<td>Controlled axis expansion (total)</td>
<td>Max. 4 axes (Included in Cs axis)</td>
<td></td>
</tr>
<tr>
<td>Number of basic simultaneously controlled axes</td>
<td>2 axes</td>
<td></td>
</tr>
<tr>
<td>Simultaneously controlled axis expansion (total)</td>
<td>Max. 4 axes</td>
<td></td>
</tr>
</tbody>
</table>

NOTE

The number of simultaneously controllable axes for manual operation (jog feed, incremental feed, or manual handle feed) is 1 or 3 (1 when bit 0 (JAX) of parameter 1002 is set to 0 and 3 when it is set to 1).

2.2 NAMES OF AXES

The names of two basic axes are always X and Z; the names of additional axes can be optionally selected from A, B, C, U, V, W, and Y by using parameter No.1020.

Limitations

- **Default axis name**

 Each axis name is determined according to parameter No. 1020. If the parameter specifies 0 or anything other than the nine letters, the axis name defaults to a number from 1 to 4.

 When a default axis name (1 to 4) is used, the system cannot operate in MEM or MDI mode.

- **Duplicate axis name**

 If the parameter specifies an axis name more than once, only the first axis to be assigned that axis name becomes operable.

NOTE

1. When G code system A is used, the letters U, V, and W cannot be used as an axis name (hence, the maximum of six controlled axes), because these letters are used as incremental commands for X, Y, and Z. To use the letters U, V, and W as axis names, the G code system must be B or C. Likewise, letter H is used as an incremental command for C, thus incremental commands cannot be used if A or B is used as an axis name.

2. In G76 (multiple–thread cutting), the A address in a block specifies the tool nose angle instead of a command for axis A.

 If C or A is used as an axis name, C or A cannot be used as an angle command for a straight line in chamfering or direct drawing dimension programming. Therefore, ",C" and ",A" should be used according to bit 4 (CCR) of parameter No. 3405.
2.3 INCREMENT SYSTEM

The increment system consists of the least input increment (for input) and least command increment (for output). The least input increment is the least increment for programming the travel distance. The least command increment is the least increment for moving the tool on the machine. Both increments are represented in mm, inches, or degrees.

The increment system is classified into IS–B and IS–C (Tables 2.3(a) and 2.3(b)). Select IS–B or IS–C using bit 1 (ISC) of parameter 1004. When the IS–C increment system is selected, it is applied to all axes and the 1/10 increment system option is required.

<table>
<thead>
<tr>
<th>Metric system</th>
<th>Least input increment</th>
<th>Least command increment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm</td>
<td>0.001mm (Diameter)</td>
<td>0.0005mm</td>
</tr>
<tr>
<td></td>
<td>0.001mm (Radius)</td>
<td>0.001mm</td>
</tr>
<tr>
<td></td>
<td>0.001deg</td>
<td>0.001deg</td>
</tr>
<tr>
<td>inch</td>
<td>0.0001inch (Diameter)</td>
<td>0.0005inch</td>
</tr>
<tr>
<td></td>
<td>0.0001inch (Radius)</td>
<td>0.001mm</td>
</tr>
<tr>
<td></td>
<td>0.001deg</td>
<td>0.001deg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metric system</th>
<th>Least input increment</th>
<th>Least command increment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm</td>
<td>0.0001mm (Diameter)</td>
<td>0.000005inch</td>
</tr>
<tr>
<td></td>
<td>0.0001mm (Radius)</td>
<td>0.00001inch</td>
</tr>
<tr>
<td></td>
<td>0.001deg</td>
<td>0.0001deg</td>
</tr>
<tr>
<td>inch</td>
<td>0.00001inch (Diameter)</td>
<td>0.000005inch</td>
</tr>
<tr>
<td></td>
<td>0.00001inch (Radius)</td>
<td>0.00001inch</td>
</tr>
<tr>
<td></td>
<td>0.001deg</td>
<td>0.0001deg</td>
</tr>
</tbody>
</table>

Whether the least command increment is measured in millimeters or inches depends on the machine. Select either the increment in advance according to the setting of parameter INM (No.1001#0). A G code (G20 or G21) or a setting parameter can be used to toggle the least command increment between millimeter input and inch input.
An axis in the metric system cannot be used together with a one in the inch system, or vice versa. In addition, some features such as circular interpolation and tool–nose radius compensation cannot be used for both axes in different units. For the unit to be set, refer to the manual supplied by the machine manufacturer.

2.4 MAXIMUM STROKES

The maximum stroke controlled by this CNC is shown in the table below:

Maximum stroke=Least command increment \pm 99999999

<table>
<thead>
<tr>
<th>Increment system</th>
<th>Maximum strokes</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS–B</td>
<td></td>
</tr>
<tr>
<td>Metric machine system</td>
<td>\pm 99999.999 mm</td>
</tr>
<tr>
<td>Metric machine system</td>
<td>\pm 99999.999 deg</td>
</tr>
<tr>
<td>Inch machine system</td>
<td>\pm 9999.9999 inch</td>
</tr>
<tr>
<td>Inch machine system</td>
<td>\pm 9999.9999 deg</td>
</tr>
<tr>
<td>IS–C</td>
<td></td>
</tr>
<tr>
<td>Metric machine system</td>
<td>\pm 9999.9999 mm</td>
</tr>
<tr>
<td>Inch machine system</td>
<td>\pm 9999.9999 deg</td>
</tr>
</tbody>
</table>

NOTE
1. The unit in the table is a diameter value with diameter programming and a radius value in radius programming.
2. A command exceeding the maximum stroke cannot be specified.
3. The actual stroke depends on the machine tool.
A number following address G determines the meaning of the command for the concerned block.

G codes are divided into the following two types.

<table>
<thead>
<tr>
<th>Type</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-shot G code</td>
<td>The G code is effective only in the block in which it is specified</td>
</tr>
<tr>
<td>Modal G code</td>
<td>The G code is effective until another G code of the same group is specified.</td>
</tr>
</tbody>
</table>

(Example)

G01 and G00 are modal G codes.

\[
\begin{align*}
&G01X_0; \\
&\quad Z_0; \\
&\quad X_0; \\
&G00Z_0; \\
&\text{G01 is effective in this range}
\end{align*}
\]

There are three G code systems: A, B, and C (Table 3). Select a G code system using bits 6 (GSB) and 7 (GSC) of parameter 3401. To use G code system B or C, the corresponding option is needed. Generally, this manual describes the use of G code system A, except when the described item can use only G code system B or C. In such cases, the use of G code system B or C is described.
1. If the CNC enters the clear state (see bit 6 (CLR) of parameter 3402) when the power is turned on or the CNC is reset, the modal G codes change as follows.
 (1) G codes marked with \blacksquare in Table 3 are enabled.
 (2) When the system is cleared due to power–on or reset, whichever specified, either G20 or G21, remains effective.
 (3) Bit 7 of parameter No. 3402 can be used to specify whether G22 or G23 is selected upon power–on. Resetting the CNC to the clear state does not affect the selection of G22 or G23.
 (4) Setting bit 0 (G01) of parameter 3402 determines which code, either G00 or G01, is effective.
 (5) Setting bit 3 (G91) of parameter 3402 determines which code, either G90 or G91, is effective.
2. G codes of group 00 except G10 and G11 are single–shot G codes.
3. P/S larm (No.010) is displayed when a G code not listed in the G code list is specified or a G code without a corresponding option is specified.
4. G codes of different groups can be specified in the same block.
 If G codes of the same group are specified in the same block, the G code specified last is valid.
5. If a G code of group 01 is specified in a canned cycle, the canned cycle is canceled in the same way as when a G80 command is specified. G codes of group 01 are not affected by G codes for specifying a canned cycle.
6. When G code system A is used, absolute or incremental programming is specified not by a G code (G90/G91) but by an address word (X/U, Z/W, C/H, Y/V). When G code system A is used for a drilling cycle, only the initial level is provided at the return point.
7. G codes are displayed for each group number.
Table 3 G code list (1/3)

<table>
<thead>
<tr>
<th>G code</th>
<th>Group</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>G00</td>
<td>00</td>
<td>Positioning (Rapid traverse)</td>
</tr>
<tr>
<td>G01</td>
<td>00</td>
<td>Linear interpolation (Cutting feed)</td>
</tr>
<tr>
<td>G02</td>
<td>00</td>
<td>Circular interpolation CW</td>
</tr>
<tr>
<td>G03</td>
<td>00</td>
<td>Circular interpolation CCW</td>
</tr>
<tr>
<td>G04</td>
<td>00</td>
<td>Dwell</td>
</tr>
<tr>
<td>G05</td>
<td>00</td>
<td>High speed remote buffer A</td>
</tr>
<tr>
<td>G07.1</td>
<td>00</td>
<td>Cylindrical interpolation</td>
</tr>
<tr>
<td>G10</td>
<td></td>
<td>Programmable data input</td>
</tr>
<tr>
<td>G11</td>
<td></td>
<td>Programmable data input cancel</td>
</tr>
<tr>
<td>G12.1</td>
<td>21</td>
<td>Polar coordinate interpolation mode</td>
</tr>
<tr>
<td>G13.1</td>
<td>21</td>
<td>Polar coordinate interpolation cancel mode</td>
</tr>
<tr>
<td>G17</td>
<td>16</td>
<td>XpYp plane selection</td>
</tr>
<tr>
<td>G18</td>
<td>16</td>
<td>ZpXp plane selection</td>
</tr>
<tr>
<td>G19</td>
<td>16</td>
<td>YpZp plane selection</td>
</tr>
<tr>
<td>G20</td>
<td>06</td>
<td>Input in inch</td>
</tr>
<tr>
<td>G21</td>
<td>06</td>
<td>Input in mm</td>
</tr>
<tr>
<td>G22</td>
<td>09</td>
<td>Stored stroke check function on</td>
</tr>
<tr>
<td>G23</td>
<td>09</td>
<td>Stored stroke check function off</td>
</tr>
<tr>
<td>G25</td>
<td>08</td>
<td>Spindle speed fluctuation detection off</td>
</tr>
<tr>
<td>G26</td>
<td>08</td>
<td>Spindle speed fluctuation detection on</td>
</tr>
<tr>
<td>G27</td>
<td>00</td>
<td>Reference position return check</td>
</tr>
<tr>
<td>G28</td>
<td>00</td>
<td>Return to reference position</td>
</tr>
<tr>
<td>G30</td>
<td>00</td>
<td>2nd, 3rd and 4th reference position return</td>
</tr>
<tr>
<td>G31</td>
<td></td>
<td>Skip function</td>
</tr>
<tr>
<td>G32</td>
<td>01</td>
<td>Thread cutting</td>
</tr>
<tr>
<td>G34</td>
<td>01</td>
<td>Variable–lead thread cutting</td>
</tr>
<tr>
<td>G36</td>
<td>00</td>
<td>Automatic tool compensation X</td>
</tr>
<tr>
<td>G37</td>
<td>00</td>
<td>Automatic tool compensation Z</td>
</tr>
<tr>
<td>G40</td>
<td>07</td>
<td>Tool nose radius compensation cancel</td>
</tr>
<tr>
<td>G41</td>
<td>07</td>
<td>Tool nose radius compensation left</td>
</tr>
<tr>
<td>G42</td>
<td>07</td>
<td>Tool nose radius compensation right</td>
</tr>
<tr>
<td>G50.3</td>
<td>00</td>
<td>Coordinate system setting or max. spindle speed setting</td>
</tr>
<tr>
<td>G50.2</td>
<td>20</td>
<td>Polygonal turning cancel</td>
</tr>
<tr>
<td>G51.2</td>
<td>20</td>
<td>Polygonal turning</td>
</tr>
</tbody>
</table>
Table 3 G code list (2/3)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Group</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>G52</td>
<td>G52</td>
<td>G52</td>
<td>00</td>
<td>Local coordinate system setting</td>
</tr>
<tr>
<td>G53</td>
<td>G53</td>
<td>G53</td>
<td>00</td>
<td>Machine coordinate system setting</td>
</tr>
<tr>
<td>G54</td>
<td>G54</td>
<td>G54</td>
<td>14</td>
<td>Workpiece coordinate system 1 selection</td>
</tr>
<tr>
<td>G55</td>
<td>G55</td>
<td>G55</td>
<td></td>
<td>Workpiece coordinate system 2 selection</td>
</tr>
<tr>
<td>G56</td>
<td>G56</td>
<td>G56</td>
<td></td>
<td>Workpiece coordinate system 3 selection</td>
</tr>
<tr>
<td>G57</td>
<td>G57</td>
<td>G57</td>
<td></td>
<td>Workpiece coordinate system 4 selection</td>
</tr>
<tr>
<td>G58</td>
<td>G58</td>
<td>G58</td>
<td></td>
<td>Workpiece coordinate system 5 selection</td>
</tr>
<tr>
<td>G59</td>
<td>G59</td>
<td>G59</td>
<td></td>
<td>Workpiece coordinate system 6 selection</td>
</tr>
<tr>
<td>G60</td>
<td>G60</td>
<td>G60</td>
<td></td>
<td>Macro calling</td>
</tr>
<tr>
<td>G61</td>
<td>G61</td>
<td>G61</td>
<td>12</td>
<td>Macro modal call</td>
</tr>
<tr>
<td>G62</td>
<td>G62</td>
<td>G62</td>
<td></td>
<td>Macro modal call cancel</td>
</tr>
<tr>
<td>G63</td>
<td>G63</td>
<td>G63</td>
<td></td>
<td>Mirror image for double turrets ON or balance cut mode</td>
</tr>
<tr>
<td>G64</td>
<td>G64</td>
<td>G64</td>
<td></td>
<td>Mirror image for double turrets OFF or balance cut mode cancel</td>
</tr>
<tr>
<td>G70</td>
<td>G70</td>
<td>G72</td>
<td>00</td>
<td>Finishing cycle</td>
</tr>
<tr>
<td>G71</td>
<td>G71</td>
<td>G73</td>
<td></td>
<td>Stock removal in turning</td>
</tr>
<tr>
<td>G72</td>
<td>G72</td>
<td>G74</td>
<td></td>
<td>Stock removal in facing</td>
</tr>
<tr>
<td>G73</td>
<td>G73</td>
<td>G75</td>
<td></td>
<td>Pattern repeating</td>
</tr>
<tr>
<td>G74</td>
<td>G74</td>
<td>G76</td>
<td></td>
<td>End face peck drilling</td>
</tr>
<tr>
<td>G75</td>
<td>G75</td>
<td>G77</td>
<td></td>
<td>Outer diameter/internal diameter drilling</td>
</tr>
<tr>
<td>G76</td>
<td>G76</td>
<td>G78</td>
<td></td>
<td>Multiple threading cycle</td>
</tr>
<tr>
<td>G80</td>
<td>G80</td>
<td>G80</td>
<td>10</td>
<td>Canned cycle for drilling cancel</td>
</tr>
<tr>
<td>G83</td>
<td>G83</td>
<td>G83</td>
<td></td>
<td>Cycle for face drilling</td>
</tr>
<tr>
<td>G84</td>
<td>G84</td>
<td>G84</td>
<td></td>
<td>Cycle for face tapping</td>
</tr>
<tr>
<td>G86</td>
<td>G86</td>
<td>G86</td>
<td></td>
<td>Cycle for face boring</td>
</tr>
<tr>
<td>G87</td>
<td>G87</td>
<td>G87</td>
<td></td>
<td>Cycle for side drilling</td>
</tr>
<tr>
<td>G88</td>
<td>G88</td>
<td>G88</td>
<td></td>
<td>Cycle for side tapping</td>
</tr>
<tr>
<td>G89</td>
<td>G89</td>
<td>G89</td>
<td></td>
<td>Cycle for side boring</td>
</tr>
<tr>
<td>G90</td>
<td>G77</td>
<td>G20</td>
<td>01</td>
<td>Outer diameter/internal diameter cutting cycle</td>
</tr>
<tr>
<td>G92</td>
<td>G78</td>
<td>G21</td>
<td></td>
<td>Thread cutting cycle</td>
</tr>
<tr>
<td>G94</td>
<td>G79</td>
<td>G24</td>
<td></td>
<td>Endface turning cycle</td>
</tr>
<tr>
<td>G96</td>
<td>G96</td>
<td>G96</td>
<td>02</td>
<td>Constant surface speed control</td>
</tr>
<tr>
<td>G97</td>
<td>G97</td>
<td>G97</td>
<td></td>
<td>Constant surface speed control cancel</td>
</tr>
<tr>
<td>G98</td>
<td>G94</td>
<td>G94</td>
<td>05</td>
<td>Per minute feed</td>
</tr>
<tr>
<td>G99</td>
<td>G95</td>
<td>G95</td>
<td></td>
<td>Per revolution feed</td>
</tr>
<tr>
<td>–</td>
<td>G90</td>
<td>G90</td>
<td>03</td>
<td>Absolute programming</td>
</tr>
<tr>
<td>–</td>
<td>G91</td>
<td>G91</td>
<td></td>
<td>Incremental programming</td>
</tr>
<tr>
<td>–</td>
<td>G98</td>
<td>G98</td>
<td>11</td>
<td>Return to initial level (See Explanations 6)</td>
</tr>
<tr>
<td>–</td>
<td>G99</td>
<td>G99</td>
<td></td>
<td>Return to R point level (See Explanations 6)</td>
</tr>
</tbody>
</table>
Table 3 G code list (3/3)

<table>
<thead>
<tr>
<th>G code</th>
<th>Group</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>G100</td>
<td>G100</td>
<td>B axis control—Program registration completion</td>
</tr>
<tr>
<td>G101</td>
<td>G101</td>
<td>B axis control—First program registration start</td>
</tr>
<tr>
<td>G102</td>
<td>G102</td>
<td>B axis control—Second program registration start</td>
</tr>
<tr>
<td>G103</td>
<td>G103</td>
<td>B axis control—Third program registration start</td>
</tr>
<tr>
<td>G110</td>
<td>G110</td>
<td>B axis control—One motion operation programming</td>
</tr>
</tbody>
</table>
4 INTERPOLATION FUNCTIONS
4.1 POSITIONING (G00)

The G00 command moves a tool to the position in the workpiece system specified with an absolute or an incremental command at a rapid traverse rate.

In the absolute command, coordinate value of the end point is programmed.

In the incremental command the distance the tool moves is programmed.

Format

```
G00 IP_;
IP_: For an absolute command, the coordinates of an end position, and for an incremental command, the distance the tool moves.
```

Explanations

Either of the following tool paths can be selected according to bit 1 (LRP) of parameter No. 1401.

- **Nonlinear interpolation positioning**
 The tool is positioned with the rapid traverse rate for each axis separately. The tool path is normally straight.

- **Linear interpolation positioning**
 The tool path is the same as in linear interpolation (G01). The tool is positioned within the shortest possible time at a speed that is not more than the rapid traverse rate for each axis. However, the tool path is not the same as in linear interpolation (G01).

The rapid traverse rate in the G00 command is set to the parameter No. 1420 for each axis independently by the machine tool builder. In the positioning mode actuated by G00, the tool is accelerated to a predetermined speed at the start of a block and is decelerated at the end of a block. Execution proceeds to the next block after confirming the in–position.

“In–position” means that the feed motor is within the specified range. This range is determined by the machine tool builder by setting to parameter No. 1826.
Examples

< Radius programming >
G00X40.0Z56.0 ; (Absolute command)
or
G00U–60.0W–30.5 ; (Incremental command)

Restrictions

The rapid traverse rate cannot be specified in the address F. Even if linear interpolation positioning is specified, nonlinear interpolation positioning is used in the following cases. Therefore, be careful to ensure that the tool does not foul the workpiece.

- G28 specifying positioning between the reference and intermediate positions.
- G53
4.2 LINEAR INTERPOLATION (G01)

Tools can move along a line.

Format

```
G01 IP_F_

IP_:
  For an absolute command, the coordinates of an end point, and for an incremental command, the distance the tool moves.

F_:
  Speed of tool feed (Feedrate)
```

Explanations

A tools move along a line to the specified position at the feedrate specified in F.
The feedrate specified in F is effective until a new value is specified. It need not be specified for each block.
The feedrate commanded by the F code is measured along the tool path. If the F code is not commanded, the feedrate is regarded as zero.
For feed–per–minute mode under 2–axis simultaneous control, the feedrate for a movement along each axis as follows:

```
G01αβ ff;

  Feed rate of α axis direction: \( F_\alpha = \frac{\alpha}{T} \times f \)
  Feed rate of β axis direction: \( F_\beta = \frac{\beta}{T} \times f \)
  L = \sqrt{\alpha^2 + \beta^2}
```

Examples

- **Linear interpolation**

 `< Diameter programming >`
 G01X40.0Z20.1F20 ; (Absolute command)
or
 G01U20.0W–25.9F20 ; (Incremental command)
4.3 CIRCULAR INTERPOLATION (G02, G03)

The command below will move a tool along a circular arc.

Format

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G17</td>
<td>Specification of arc on XpYp plane</td>
</tr>
<tr>
<td>G18</td>
<td>Specification of arc on ZpXp plane</td>
</tr>
<tr>
<td>G19</td>
<td>Specification of arc on YpZp plane</td>
</tr>
<tr>
<td>G02</td>
<td>Circular Interpolation Clockwise direction (CW)</td>
</tr>
<tr>
<td>G03</td>
<td>Circular Interpolation Counterclockwise direction (CCW)</td>
</tr>
<tr>
<td>Xp_</td>
<td>Command values of X axis or its parallel axis (set by parameter No. 1022)</td>
</tr>
<tr>
<td>Yp_</td>
<td>Command values of Y axis or its parallel axis (set by parameter No. 1022)</td>
</tr>
<tr>
<td>Zp_</td>
<td>Command values of Z axis or its parallel axis (set by parameter No. 1022)</td>
</tr>
<tr>
<td>I_</td>
<td>Xp axis distance from the start point to the center of an arc with sign, radius value</td>
</tr>
<tr>
<td>J_</td>
<td>Yp axis distance from the start point to the center of an arc with sign, radius value</td>
</tr>
<tr>
<td>k_</td>
<td>Zp axis distance from the start point to the center of an arc with sign, radius value</td>
</tr>
<tr>
<td>R_</td>
<td>Arc radius with no sign (always with radius value)</td>
</tr>
<tr>
<td>F_</td>
<td>Feedrate along the arc</td>
</tr>
</tbody>
</table>
NOTE
The U–, V–, and W–axes (parallel with the basic axis) can be used with G–codes B and C.

Explanations

- **Direction of the circular interpolation**
 “Clockwise” (G02) and “counterclockwise” (G03) on the \(X_pY_p\) plane (\(Z_pX_p\) plane or \(Y_pZ_p\) plane) are defined when the \(X_pY_p\) plane is viewed in the positive–to–negative direction of the \(Z_p\) axis (\(Y_p\) axis or \(X_p\) axis, respectively) in the Cartesian coordinate system. See the figure below.

- **Distance moved on an arc**
 The end point of an arc is specified by address \(X_p\), \(Y_p\) or \(Z_p\), and is expressed as an absolute or incremental value according to G90 or G91. For the incremental value, the distance of the end point which is viewed from the start point of the arc is specified.

- **Distance from the start point to the center of arc**
 The arc center is specified by addresses I, J, and K for the \(X_p\), \(Y_p\), and \(Z_p\) axes, respectively. The numerical value following I, J, or K, however, is a vector component in which the arc center is seen from the start point, and is always specified as an incremental value irrespective of G90 and G91, as shown below. I, J, and K must be signed according to the direction.

- **Full–circle programming**
 When \(X_p\), \(Y_p\), and \(Z_p\) are omitted (the end point is the same as the start point) and the center is specified with I, J, and K, a 360° arc (circle) is specified.

I0, J0, and K0 can be omitted.
If the difference between the radius at the start point and that at the end point exceeds the value in a parameter (No.3410), an P/S alarm (No.020) occurs.
• **Arc radius**

The distance between an arc and the center of a circle that contains the arc can be specified using the radius, R, of the circle instead of I, J, and K. In this case, one arc is less than 180°, and the other is more than 180° are considered. An arc with a sector angle of 180° or wider cannot be specified. If Xp, Yp, and Zp are all omitted, if the end point is located at the same position as the start point and when R is used, an arc of 0° is programmed

```
G02R ; (The cutter does not move.)
```

For arc (1) (less than 180°)

```
G02 W60.0 U10.0 R50.0 F300.0 ;
```

For arc (2) (greater than 180°)

```
An arc with a sector angle of 180° or wider cannot be specified within a single block.
```

- **Feedrate**

The feedrate in circular interpolation is equal to the feed rate specified by the F code, and the feedrate along the arc (the tangential feedrate of the arc) is controlled to be the specified feedrate.

The error between the specified feedrate and the actual tool feedrate is ±2% or less. However, this feed rate is measured along the arc after the tool nose radius compensation is applied.

- **Restrictions**

 - **Simultaneously specifying R with I, J, and K**

 If I, J, K, and R addresses are specified simultaneously, the arc specified by address R takes precedence and the other are ignored.

 - **Specifying an axis that is not contained in the specified plane**

 If an axis not contained in the specified plane is commanded, an alarm is displayed.

 For example, when a ZX plane is specified in G–code B or C, specifying the X-axis or U-axis (parallel to the X-axis) causes P/S alarm No. 028 to be generated.

 - **Difference in the radius between the start and end points**

 If the difference in the radius between the start and end points of the arc exceeds the value specified in parameter No. 3410, P/S alarm No. 020 is generated.

 If the end point is not on the arc, the tool moves in a straight line along one of the axes after reaching the end point.
• Specifying a semicircle with R

If an arc having a central angle approaching 180° is specified with R, the calculation of the center coordinates may produce an error. In such a case, specify the center of the arc with I, J, and K.

Examples

• Command of circular interpolation X, Z

```
G02X50.0Z30.0R25.0F0.3;
```

```
G02X50.0Z30.0I25.0F0.3;
```

```
G02X50.0Z30.0K25.0F0.3;
```

(Diameter programming)
4.4 POLAR COORDINATE INTERPOLATION (G12.1, G13.1)

Polar coordinate interpolation is a function that exercises contour control in converting a command programmed in a Cartesian coordinate system to the movement of a linear axis (movement of a tool) and the movement of a rotary axis (rotation of a workpiece). This method is useful in cutting a front surface and grinding a cam shaft on a lathe.

G12.1 ;
Starts polar coordinate interpolation mode (enables polar coordinate interpolation)
Specify linear or circular interpolation using coordinates in a Cartesian coordinate system consisting of a linear axis and rotary axis (virtual axis).

G13.1 ;
Polar coordinate interpolation mode is cancelled (for not performing polar coordinate interpolation)
G112 and G113 can be used in place of G12.1 and G13.1, respectively.

Format

- Specify G12.1 and G13.1 in Separate Blocks.

Explanations

- Polar coordinate interpolation plane

G12.1 starts the polar coordinate interpolation mode and selects a polar coordinate interpolation plane (Fig. 4.4 (a)). Polar coordinate interpolation is performed on this plane.

When the power is turned on or the system is reset, polar coordinate interpolation is canceled (G13.1). The linear and rotation axes for polar coordinate interpolation must be set in parameters (No. 5460 and 5461) beforehand.

CAUTION

The plane used before G12.1 is specified (plane selected by G17, G18, or G19) is canceled. It is restored when G13.1 (canceling polar coordinate interpolation) is specified. When the system is reset, polar coordinate interpolation is canceled and the plane specified by G17, G18, or G19 is used.
In the polar coordinate interpolation mode, program commands are specified with Cartesian coordinates on the polar coordinate interpolation plane. The axis address for the rotation axis is used as the axis address for the second axis (virtual axis) in the plane. Whether a diameter or radius is specified for the first axis in the plane is the same as for the rotation axis regardless of the specification for the first axis in the plane. The virtual axis is at coordinate 0 immediately after G12.1 is specified. Polar interpolation is started assuming the angle of 0 for the position of the tool when G12.1 is specified.

Specify the feedrate as a speed (relative speed between the workpiece and tool) tangential to the polar coordinate interpolation plane (Cartesian coordinate system) using F.

G codes which can be specified in the polar coordinate interpolation mode

- G01 Linear interpolation
- G02, G03 Circular interpolation
- G04 Dwell
- G40, G41, G42 Tool nose radius compensation
 (Polar coordinate interpolation is applied to the path after cutter compensation.)
- G65, G66, G67 Custom macro command
- G98, G99 Feed per minute, feed per revolution

Circular interpolation in the polar coordinate plane

The addresses for specifying the radius of an arc for circular interpolation (G02 or G03) in the polar coordinate interpolation plane depend on the first axis in the plane (linear axis).

- I and J in the Xp–Yp plane when the linear axis is the X–axis or an axis parallel to the X–axis.
- J and K in the Yp–Zp plane when the linear axis is Y–axis or an axis parallel to the Y–axis.
- K and I in the Zp–Xp plane when the linear axis is the Z–axis or an axis parallel to the Z–axis.

The radius of an arc can be specified also with an R command.

NOTE

The U–, V–, and W–axes (parallel with the basic axis) can be used with G–codes B and C.

Movement along axes not in the polar coordinate interpolation plane in the polar coordinate interpolation mode

The tool moves along such axes normally, independent of polar coordinate interpolation.

Current position display in the polar coordinate interpolation mode

Actual coordinates are displayed. However, the remaining distance to move in a block is displayed based on the coordinates in the polar coordinate interpolation plane (Cartesian coordinates).
Restrictions

- **Coordinate system for the polar coordinate interpolation**
 Before G12.1 is specified, a workpiece coordinate system (where the center of the rotary axis is the origin of the coordinate system) must be set. In the G12.1 mode, the coordinate system must not be changed (G92, G52, G53, relative coordinate reset, G54 through G59, etc.).

- **Tool nose radius compensation command**
 The polar coordinate interpolation mode cannot be started or terminated (G12.1 or G13.1) in the tool nose radius compensation mode (G41 or G42). G12.1 or G13.1 must be specified in the tool nose radius compensation canceled mode (G40).

- **Program restart**
 For a block in the G12.1 mode, the program cannot be restarted.

- **Cutting feedrate for the rotation axis**
 Polar coordinate interpolation converts the tool movement for a figure programmed in a Cartesian coordinate system to the tool movement in the rotation axis (C-axis) and the linear axis (X-axis). When the tool moves closer to the center of the workpiece, the C-axis component of the feedrate becomes larger and may exceed the maximum cutting feedrate for the C-axis (set in parameter (No. 1422)), causing an alarm (see the figure below). To prevent the C-axis component from exceeding the maximum cutting feedrate for the C-axis, reduce the feedrate specified with address F or create a program so that the tool (center of the tool when tool nose radius compensation is applied) does not move close to the center of the workpiece.

WARNING

Consider lines L1, L2, and L3. \(\Delta X \) is the distance the tool moves per time unit at the feedrate specified with address F in the Cartesian coordinate system. As the tool moves from L1 to L2 to L3, the angle at which the tool moves per time unit corresponding to \(\Delta X \) in the Cartesian coordinate system increases from \(\theta_1 \) to \(\theta_2 \) to \(\theta_3 \).

In other words, the C-axis component of the feedrate becomes larger as the tool moves closer to the center of the workpiece. The C component of the feedrate may exceed the maximum cutting feedrate for the C-axis because the tool movement in the Cartesian coordinate system has been converted to the tool movement for the C-axis and the X-axis.

\[
F < L \times R \times \frac{\pi}{180} \text{(mm/min)}
\]

L : Distance (in mm) between the tool center and workpiece center when the tool center is the nearest to the workpiece center
R : Maximum cutting feedrate (deg/min) of the C axis

Then, a speed specifiable with address F in polar coordinate interpolation can be given by the formula below. Specify a speed allowed by the formula. The formula provides a theoretical value; in practice, a value slightly smaller than a theoretical value may need to be used due to a calculation error.

- **Diameter and radius programming**
 Even when diameter programming is used for the linear axis (X-axis), radius programming is applied to the rotary axis (C-axis).
Example of Polar Coordinate Interpolation Program Based on X Axis (Linear Axis) and C Axis (Rotary Axis)

X axis is by diameter programming, C axis is by radius programming.

O0001 ;
;
N010 T0101
;
N0100 G00 X120.0 C0 Z _ ; Positioning to start position
N0200 G12.1 ;
N0201 G42 G01 X40.0 F _ ; Start of polar coordinate interpolation
N0202 C10.0 ;
N0203 G03 X20.0 C20.0 R10.0 ;
N0204 G01 X–40.0 ;
N0205 C–10.0 ;
N0206 G03 X–20.0 C–20.0 I10.0 J0 ;
N0207 G01 X40.0 ;
N0208 C0 ;
N0209 G40 X120.0 ;
N0210 G13.1 ;
N0300 Z __ ;
N0400 X __C __ ;
;
N0900M30 ;

Geometry program (program based on cartesian coordinates on X–C' plane)

Cancellation of polar coordinate interpolation
The amount of travel of a rotary axis specified by an angle is once internally converted to a distance of a linear axis along the outer surface so that linear interpolation or circular interpolation can be performed with another axis. After interpolation, such a distance is converted back to the amount of travel of the rotary axis.

The cylindrical interpolation function allows the side of a cylinder to be developed for programming. So programs such as a program for cylindrical cam grooving can be created very easily.

Format

\[
\begin{align*}
\text{G07.1 IP } r & \text{ ; Starts the cylindrical interpolation mode} \\
& \text{(enables cylindrical interpolation).} \\
\ldots \\
\text{G07.1 IP } 0 & \text{ ; The cylindrical interpolation mode is cancelled.} \\
IP & \text{ : An address for the rotation axis} \\
r & \text{ : The radius of the cylinder} \\
\end{align*}
\]

Specify G07.1 IP r ; and G07.1 IP 0; in separate blocks. G107 can be used instead of G07.1.

Explanations

- **Plane selection** (G17, G18, G19)

 Use parameter No. 1002 to specify whether the rotation axis is the X-, Y-, or Z-axis, or an axis parallel to one of these axes. Specify the G code to select a plane for which the rotation axis is the specified linear axis.

 For example, when the rotation axis is an axis parallel to the X-axis, G17 must specify an Xp–Yp plane, which is a plane defined by the rotation axis and the Y-axis or an axis parallel to the Y-axis.

 Only one rotation axis can be set for cylindrical interpolation.

 NOTE

 The U-, V-, and W-axes (parallel with the basic axis) can be used with G-codes B and C.

- **Feedrate**

 A feedrate specified in the cylindrical interpolation mode is a speed on the developed cylindrical surface.
In the cylindrical interpolation mode, circular interpolation is possible with the rotation axis and another linear axis. Radius R is used in commands in the same way as described in Section 4.4. The unit for a radius is not degrees but millimeters (for metric input) or inches (for inch input).

< Example Circular interpolation between the Z axis and C axis >

For the C axis of parameter No. 1022, 5 (axis parallel with the X axis) is to be set. In this case, the command for circular interpolation is

\[G18 \ Z_\ C_; \]
\[G02 \ (G03) \ Z_\ C_\ R_; \]

For the C axis of parameter No. 1022, 6 (axis parallel with the Y axis) may be specified instead. In this case, however, the command for circular interpolation is

\[G19 \ C_\ Z_; \]
\[G02 \ (G03) \ Z_\ C_\ R_; \]

To perform cutter compensation in the cylindrical interpolation mode, cancel any ongoing cutter compensation mode before entering the cylindrical interpolation mode. Then, start and terminate cutter compensation within the cylindrical interpolation mode.

In the cylindrical interpolation mode, the amount of travel of a rotary axis specified by an angle is once internally converted to a distance of a linear axis on the outer surface so that linear interpolation or circular interpolation can be performed with another axis. After interpolation, such a distance is converted back to an angle. For this conversion, the amount of travel is rounded to a least input increment. So when the radius of a cylinder is small, the actual amount of travel can differ from a specified amount of travel. Note, however, that such an error is not accumulative.

If manual operation is performed in the cylindrical interpolation mode with manual absolute on, an error can occur for the reason described above.

\[\text{The actual amount of travel} = \left[\frac{\text{MOTION REV}}{2 \times 2 \pi R} \times \text{Specified value} \times \frac{2 \times 2 \pi R}{\text{MOTION REV}} \right] \]

\[\text{MOTION REV} : \text{The amount of travel per rotation of the rotation axis (Setting value of parameter No. 1260)} \]
\[R : \text{Workpiece radius} \]
\[\left[\right] : \text{Rounded to the least input increment} \]

Restrictions

- **Arc radius specification in the cylindrical interpolation mode**
 In the cylindrical interpolation mode, an arc radius cannot be specified with word address I, J, or K.

- **Circular interpolation and tool nose radius compensation**
 If the cylindrical interpolation mode is started when tool nose radius compensation is already applied, circular interpolation is not correctly performed in the cylindrical interpolation mode.
- **Positioning**
 In the cylindrical interpolation mode, positioning operations (including those that produce rapid traverse cycles such as G28, G80 through G89) cannot be specified. Before positioning can be specified, the cylindrical interpolation mode must be cancelled. Cylindrical interpolation (G07.1) cannot be performed in the positioning mode (G00).

- **Coordinate system setting**
 In the cylindrical interpolation mode, a workpiece coordinate system G50 cannot be specified.

- **Cylindrical interpolation mode setting**
 In the cylindrical interpolation mode, the cylindrical interpolation mode cannot be reset. The cylindrical interpolation mode must be cancelled before the cylindrical interpolation mode can be reset.

- **Canned cycle for drilling during cylindrical interpolation mode**
 Canned cycles for drilling, G81 to G89, cannot be specified during cylindrical interpolation mode.

- **Mirror Image for Double Turret**
 Mirror image for double turret, G68 and G69, cannot be specified during cylindrical interpolation mode.
Examples

Example of a Cylindrical Interpolation Program

O0001 (CYLINDRICAL INTERPOLATION);
N01 G00 Z100.0 C0;
N02 G01 G18 W0 H0;
N03 G07.1 H57299;
N04 G01 G42 Z120.0 D01 F250;
N05 C30.0;
N06 G02 Z90.0 C60.0 R30.0;
N07 G01 Z70.0;
N08 G03 Z60.0 C70.0 R10.0;
N09 G01 C150.0;
N10 G03 Z70.0 C190.0 R75.0;
N11 G01 Z110.0 C230.0;
N12 G02 Z120.0 C270.0 R75.0;
N13 G01 C360.0;
N14 G40 Z100.0;
N15 G07.1 C0;
N16 M30;
4.6 CONSTANT LEAD THREADING (G32)

Tapered screws and scroll threads in addition to equal lead straight threads can be cut by using a G32 command. The spindle speed is read from the position coder on the spindle in real time and converted to a cutting feedrate for feed–per minute mode, which is used to move the tool.

Format

```
G32 IP_ F_;  
IP_: End point  
F_: Lead of the long axis  
(always radius programming)  
```

Explanations

In general, thread cutting is repeated along the same tool path in rough cutting through finish cutting for a screw. Since thread cutting starts when the position coder mounted on the spindle outputs a 1–turn signal, threading is started at a fixed point and the tool path on the workpiece is unchanged for repeated thread cutting. Note that the spindle speed must remain constant from rough cutting through finish cutting. If not, incorrect thread lead will occur.
In general, the lag of the servo system, etc. will produce somewhat incorrect leads at the starting and ending points of a thread cut. To compensate for this, a threading length somewhat longer than required should be specified.

Table 4.6 lists the ranges for specifying the thread lead.

Table 4.6 Ranges of lead sizes that can be specified

<table>
<thead>
<tr>
<th>Least command increment</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>mm input</td>
<td>0.0001 to 500.0000mm</td>
</tr>
<tr>
<td>Inch input</td>
<td>0.000001 inch to 9.999999 inch</td>
</tr>
</tbody>
</table>
4. INTERPOLATION FUNCTIONS

Explanations

1. Straight thread cutting

 The following values are used in programming:
 - Thread lead: 4mm
 - $\delta_1 = 3\text{mm}$
 - $\delta_2 = 1.5\text{mm}$
 - Depth of cut: 1mm (cut twice)
 - (Metric input, Diameter programming)

 G00 U–62.0 ;
 G32 W–74.5 F4.0 ;
 G00 U62.0 ;
 W74.5 ;
 U–64.0 ;
 (For the second cut, cut 1mm more)
 G32 W–74.5 ;
 G00 U64.0 ;
 W74.5 ;

2. Tapered thread cutting

 The following values are used in programming:
 - Thread lead: 3.5mm in the direction of the Z axis
 - $\delta_1 = 2\text{mm}$
 - $\delta_2 = 1\text{mm}$
 - Cutting depth in the X axis direction is 1mm
 (Cut twice)
 - (Metric input, Diameter programming)

 G00 X 12.0 Z 72.0 ;
 G32 X 41.0 Z 29.0 F3.5 ;
 G00 X 50.0 ;
 Z 72.0 ;
 X 10.0 ;
 (Cut 1mm more for the second cut)
 G32 X 39.0 Z 29.0 ;
 G00 X 50.0 ;
 Z 72.0 ;
WARNING
1 Feedrate override is effective (fixed at 100%) during thread cutting.
2 It is very dangerous to stop feeding the thread cutter without stopping the spindle. This will suddenly increase the cutting depth. Thus, the feed hold function is ineffective while thread cutting. If the feed hold button is pressed during thread cutting, the tool will stop after a block not specifying thread cutting is executed as if the SINGLE BLOCK button were pushed. However, the feed hold lamp (SPL lamp) lights when the FEED HOLD button on the machine control panel is pushed. Then, when the tool stops, the lamp is turned off (Single Block stop status).
3 When the FEED HOLD button is held down, or is pressed again in the first block that does not specify thread cutting immediately after a thread cutting block, the tool stops at the block that does not specify thread cutting.
4 When thread cutting is executed in the single block status, the tool stops after execution of the first block not specifying thread cutting.
5 When the mode was changed from automatic operation to manual operation during thread cutting, the tool stops at the first block not specifying thread cutting as when the feed hold button is pushed as mentioned in Note 3. However, when the mode is changed from one automatic operation mode to another, the tool stops after execution of the block not specifying thread cutting as for the single block mode in Note 4.
6 When the previous block was a thread cutting block, cutting will start immediately without waiting for detection of the 1-turn signal even if the present block is a thread cutting block.
 G32Z F;
 Z_; (A 1-turn signal is not detected before this block.)
 G32 ; (Regarded as threading block.)
 Z F_; (One turn signal is also not detected.)
7 Because the constant surface speed control is effective during scroll thread or tapered screw cutting and the spindle speed changes, the correct thread lead may not be cut. Therefore, do not use the constant surface speed control during thread cutting. Instead, use G97.
8 A movement block preceding the thread cutting block must not specify chamfering or corner R.
9 A thread cutting block must not specifying chamfering or corner R.
10 The spindle speed override function is disabled during thread cutting. The spindle speed is fixed at 100%.
11 Thread cycle retract function is ineffective to G32.
4.7 VARIABLE-LEAD THREAD CUTTING (G34)

Specifying an increment or a decrement value for a lead per screw revolution enables variable-lead thread cutting to be performed.

Fig. 4.7 Variable-lead screw

Format

G34 IP_F_K;

IP : End point
F : Lead in longitudinal axis direction at the start point
K : Increment and decrement of lead per spindle revolution

Explanations

Address other than K are the same as in straight/taper thread cutting with G32. Table 4.7 lists a range of values that can be specified as K.

Table 4.7 Range of valid K values

<table>
<thead>
<tr>
<th>Metric input</th>
<th>± 0.0001 to ± 500.0000 mm/rev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inch input</td>
<td>± 0.000001 to ± 9.999999 inch/rev</td>
</tr>
</tbody>
</table>

P/S alarm (No. 14) is produced, for example, when K such that the value in Table 4.7 is exceeded is directed, the maximum value of lead is exceeded as a result of increase or decrease by K or the lead has a negative value.

WARNING

The “Thread Cutting Cycle Retract” is not effective for G34.

Examples

Lead at the start point: 8.0 mm
Lead increment: 0.3 mm/rev

G34 Z–72.0 F8.0 K0.3 ;
4.8 CONTINUOUS THREAD CUTTING

This function for continuous thread cutting is such that fractional pulses output to a joint between move blocks are overlapped with the next move for pulse processing and output (block overlap). Therefore, discontinuous machining sections caused by the interruption of move during continuously block machining are eliminated, thus making it possible to continuously direct the block for thread cutting instructions.

Since the system is controlled in such a manner that the synchronism with the spindle does not deviate in the joint between blocks wherever possible, it is possible to performed special thread cutting operation in which the lead and shape change midway.

![Fig. 4.8 Continuous thread cutting](image)

Even when the same section is repeated for thread cutting while changing the depth of cut, this system allows a correct machining without impairing the threads.

NOTE

1. Block overlap is effective even for G01 command, producing a more excellent finishing surface.
2. When extreme micro blocks continue, no block overlap may function.
4.9 MULTIPLE–THREAD CUTTING

Using the Q address to specify an angle between the one–spindle–rotation signal and the start of threading shifts the threading start angle, making it possible to produce multiple–thread screws with ease.

Format

(constant–lead threading)

G32 IP_ F_ Q_ ;
G32 IP_ Q_ ;

IP_ : End point
F_ : Lead in longitudinal direction
Q_ : Threading start angle

Explanations

• Available thread cutting commands
 G32: Constant–lead thread cutting
 G34: Variable–lead thread cutting
 G76: Multiple–thread cutting cycle
 G92: Thread cutting cycle

Limitations

• Start angle
 The start angle is not a continuous–state (modal) value. It must be specified each time it is used. If a value is not specified, 0 is assumed.

• Start angle increment
 The start angle (Q) increment is 0.001 degrees. Note that no decimal point can be specified.
 Example:
 For a shift angle of 180 degrees, specify Q180000.
 Q180.000 cannot be specified, because it contains a decimal point.

• Specifiable start angle range
 A start angle (Q) of between 0 and 360000 (in 0.001–degree units) can be specified. If a value greater than 360000 (360 degrees) is specified, it is rounded down to 360000 (360 degrees).

• Multiple–thread cutting (G76)
 For the G76 multiple–thread cutting command, always use the FS15 tape format.
Examples

Program for producing double-threaded screws (with start angles of 0 and 180 degrees)

 G00 X40.0 ;
 G32 W–38.0 F4.0 Q0 ;
 G00 X72.0 ;
 W38.0 ;
 X40.0 ;
 G32 W–38.0 F4.0 Q180000 ;
 G00 X72.0 ;
 W38.0 ;
4.10 SKIP FUNCTION (G31)

Linear interpolation can be commanded by specifying axial move following the G31 command, like G01. If an external skip signal is input during the execution of this command, execution of the command is interrupted and the next block is executed.

The skip function is used when the end of machining is not programmed but specified with a signal from the machine, for example, in grinding. It is used also for measuring the dimensions of a workpiece.

For details of how to use this function, refer to the manual supplied by the machine tool builder.

Format

```
G31 IP_;
G31: One-shot G code (If is effective only in the block in which it is specified)
```

Explanations

The coordinate values when the skip signal is turned on can be used in a custom macro because they are stored in the custom macro system variable #5061 to #5068, as follows:

- #5061 X axis coordinate value
- #5062 Z axis coordinate value
- #5063 3rd axis coordinate value
- #5064 4th axis coordinate value

WARNING

To increase the precision of the tool position when the skip signal is input, feedrate override, dry run, and automatic acceleration/deceleration is disabled for the skip function when the feedrate is specified as a feed per minute value.

To enable these functions, set bit 7 (SKF) of parameter No. 6200 to 1. If the feedrate is specified as a feed per rotation value, feedrate override, dry run, and automatic acceleration/deceleration are enabled for the skip function, regardless of the setting of the SKF bit.

NOTE

1. If G31 command is issued while tool nose radius compensation is applied, an P/S alarm of No.035 is displayed. Cancel the cutter compensation with the G40 command before the G31 command is specified.
2. For the high-speed skip option, executing G31 during feed-per-rotation mode causes P/S alarm (No.211) to be generated.
Examples

- The next block to G31 is an incremental command

- The next block to G31 is an absolute command for 1 axis

- The next block to G31 is an absolute command for 2 axes
4.11 MULTISTAGE SKIP

In a block specifying P1 to P4 after G31, the multistage skip function stores coordinates in a custom macro variable when a skip signal (4–point or 8–point; 8–point when a high–speed skip signal is used) is turned on. Parameters No. 6202 to No. 6205 can be used to select a 4–point or 8–point (when a high–speed skip signal is used) skip signal. One skip signal can be set to match multiple Pn or Qn (n=1,2,3,4) as well as to match a Pn or Qn on a one–to–one basis.

A skip signal from equipment such as a fixed–dimension size measuring instrument can be used to skip programs being executed. In plunge grinding, for example, a series of operations from rough machining to spark–out can be performed automatically by applying a skip signal each time rough machining, semi–fine machining, fine–machining, or spark–out operation is completed.

Format

```
Move command
G31 IP__ F__ P__ ;
   IP__ : End point
   F__ : Feedrate
   P__ : P1–P4

Dwell
G04 X(U,P)__ (Q__) ;
   X(U,P)__ : Dwell time
   Q__ : Q1–Q4
```

Explanations

Multistage skip is caused by specifying P1, P2, P3, or P4 in a G31 block. For an explanation of selecting (P1, P2, P3, or P4), refer to the manual supplied by the machine tool builder.

Specifying Q1, Q2, Q3, or Q4 in G04 (dwell command) enables dwell skip in a similar way to specifying G31. A skip may occur even if Q is not specified. For an explanation of selecting (Q1, Q2, Q3, or Q4), refer to the manual supplied by the machine tool builder.

• Correspondence to skip signals

Parameter Nos. 6202 to 6205 can be used to specify whether the 4–point or 8–point skip signal is used (when a high–speed skip signal is used). Specification is not limited to one–to–one correspondence. It is possible to specify that one skip signal correspond to two or more Pn’s or Qn’s (n=1, 2, 3, 4). Also, bits 0 (DS1) to 7 (DS8) of parameter No. 6206 can be used to specify dwell.

CAUTION

Dwell is not skipped when Qn is not specified and parameters DS1–DS8 (No. 6206#0–#7) are not set.
With the motor torque limited (for example, by a torque limit command, issued through the PMC window), a move command following G31 P99 (or G31 P98) can cause the same type of cutting feed as with G01 (linear interpolation).

With the issue of a signal indicating a torque limit has been reached (because of pressure being applied or for some other reason), a skip occurs.

For details of how to use this function, refer to the manuals supplied by the machine tool builder.

Format

```
G31 P99 IP_ F_ ;
G31 P98 IP_ F_ ;
```

G31: One–shot G code (G code effective only in the block in which it is issued)

Explanations

- **G31 P99**

 If the motor torque limit is reached, or a SKIP signal is received during execution of G31 P99, the current move command is aborted, and the next block is executed.

- **G31 P98**

 If the motor torque limit is reached during execution of G31 P98, the current move command is aborted, and the next block is executed. The SKIP signal <X0004#7/Tool post 2 X0013#7> does not affect G31 P98. Entering a SKIP signal during the execution of G31 P98 does not cause a skip.

- **Torque limit command**

 If a torque limit is not specified before the execution of G31 P99/98, the move command continues; no skip occurs even if a torque limit is reached.

- **Custom macro system variable**

 When G31 P99/98 is specified, the custom macro variables hold the coordinates at the end of a skip. (See Section 4.9.)

 If a SKIP signal causes a skip with G31 P99, the custom macro system variables hold the coordinates based on the machine coordinate system when it stops, rather than those when the SKIP signal is entered.

Limitations

- **Axis command**

 Only one axis can be controlled in each block with G31 P98/99.

 If two or more axes are specified to be controlled in such blocks, or no axis command is issued, P/S alarm No. 015 is generated.

- **Degree of servo error**

 When a signal indicating that a torque limit has been reached is input during execution of G31 P99/98, and the degree of servo error exceeds 32767, P/S alarm No. 244 is generated.

- **High–speed skip**

 With G31 P99, a SKIP signal can cause a skip, but not a high–speed skip.
G31 P99/98 cannot be used for axes subject to simplified synchronization or the X-axis or Z-axis when under slanted axis control.

Bit 7 (SKF) of parameter No. 6200 must be set to disable dry run, override, and auto acceleration or deceleration for G31 skip commands.

Do not use G31 P99/98 in consecutive blocks.

WARNING
Always specify a torque limit before a G31 P99/98 command. Otherwise, G31 P99/98 allows move commands to be executed without causing a skip.

NOTE
If G31 is issued with tool nose radius compensation specified, P/S alarm No. 035 is generated. Therefore, before issuing G31, execute G40 to cancel tool nose radius compensation.

Examples

```
O0001 ;
;
M00 ;
;
G31 P99 X200. F100 ;
;
G01 X100. F500 ;
;
M00 ;
;
M30 ;
%
```

The PMC specifies the torque limit through the window.

Torque limit skip command

Move command for which a torque limit is applied

Torque limit canceled by the PMC
5.1 GENERAL

The feed functions control the feedrate of the tool. The following two feed functions are available:

- **Feed functions**
 1. Rapid traverse
 When the positioning command (G00) is specified, the tool moves at a rapid traverse feedrate set in the CNC (parameter No. 1420).
 2. Cutting feed
 The tool moves at a programmed cutting feedrate.

- **Override**
 Override can be applied to a rapid traverse rate or cutting feedrate using the switch on the machine operator’s panel.

- **Automatic acceleration/deceleration**
 To prevent a mechanical shock, acceleration/deceleration is automatically applied when the tool starts and ends its movement (Fig. 5.1 (a)).

![Fig. 5.1 (a) Automatic acceleration/deceleration (example)]
5. FEED FUNCTIONS

• Tool path in a cutting feed

If the direction of movement changes between specified blocks during cutting feed, a rounded-corner path may result (Fig. 5.1 (b)).

![Fig. 5.1 (b) Example of tool path between two blocks](image)

In circular interpolation, a radial error occurs (Fig. 5.1(c)).

![Fig. 5.1 (c) Example of radial error in circular interpolation](image)

The rounded-corner path shown in Fig. 5.1(b) and the error shown in Fig. 5.1(c) depend on the feedrate. So, the feedrate needs to be controlled for the tool to move as programmed.

5.2
RAPID TRAVERSE

Format

```
G00 IP_;
G00 : G code (group 01) for positioning (rapid traverse)
IP_; : Dimension word for the end point
```

Explanations

The positioning command (G00) positions the tool by rapid traverse. In rapid traverse, the next block is executed after the specified feedrate becomes 0 and the servo motor reaches a certain range set by the machine tool builder (in-position check).

A rapid traverse rate is set for each axis by parameter No. 1420, so no rapid traverse feedrate need be programmed.

The following overrides can be applied to a rapid traverse rate with the switch on the machine operator’s panel: F0, 25, 50, 100%

F0: Allows a fixed feedrate to be set for each axis by parameter No. 1421.

For detailed information, refer to the appropriate manual of the machine tool builder.
5.3 CUTTING FEED

Feedrate of linear interpolation (G01), circular interpolation (G02, G03), etc. are commanded with numbers after the F code.

In cutting feed, the next block is executed so that the feedrate change from the previous block is minimized.

Two modes of specification are available:

1. Feed per minute (G98)
 After F, specify the amount of feed of the tool per minute.

2. Feed per revolution (G99)
 After F, specify the amount of feed of the tool per spindle revolution.

Format

<table>
<thead>
<tr>
<th>Feed per minute</th>
<th>Feed per revolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>G98 ; G code (group 05) for feed per minute</td>
<td>G99 ; G code (group 05) for feed per revolution</td>
</tr>
<tr>
<td>F_ ; Feedrate command (mm/min or inch/min)</td>
<td>F_ ; Feedrate command (mm/rev or inch/rev)</td>
</tr>
</tbody>
</table>

Explanations

- **Tangential speed constant control**
 Cutting feed is controlled so that the tangential feedrate is always set at a specified feedrate.

- **Feed per minute (G98)**
 After specifying G98 (in the feed per minute mode), the amount of feed of the tool per minute is to be directly specified by setting a number after F. G98 is a modal code. Once a G98 is specified, it is valid until G99 (feed per revolution) is specified. At power–on, the feed per revolution mode is set.
 An override from 0% to 254% (in 1% steps) can be applied to feed per minute with the switch on the machine operator’s panel. For detailed information, see the appropriate manual of the machine tool builder.
Feed amount per minute (mm/min or inch/min)

WARNING
No override can be used for some commands such as for threading.

- **Feed per revolution (G99)**

 After specifying G99 (in the feed per revolution mode), the amount of feed of the tool per spindle revolution is to be directly specified by setting a number after F. G99 is a modal code. Once a G99 is specified, it is valid until G98 (feed per minute) is specified.

 An override from 0% to 254% (in 1% steps) can be applied to feed per revolution with the switch on the machine operator’s panel. For detailed information, see the appropriate manual of the machine tool builder.

 If bit 0 (NPC) of parameter No. 1402 has been set to 1, feed-per-rotation commands can be specified even when a position coder is not being used. (The CNC converts feed-per-rotation commands to feed-per-minute commands.)

Feed amount per spindle revolution (mm/rev or inch/rev)

CAUTION
1 When the speed of the spindle is low, feedrate fluctuation may occur. The slower the spindle rotates, the more frequently feedrate fluctuation occurs.
2 No override can be used for some commands such as for threading.

- **Cutting feedrate clamp**

 A common upper limit can be set on the cutting feedrate along each axis with parameter No. 1422. If an actual cutting feedrate (with an override applied) exceeds a specified upper limit, it is clamped to the upper limit.
NOTE
An upper limit is set in mm/min or inch/min. CNC calculation may involve a feedrate error of \(\pm 2\% \) with respect to a specified value. However, this is not true for acceleration/deceleration. To be more specific, this error is calculated with respect to a measurement on the time the tool takes to move 500 mm or more during the steady state:

See Appendix C for a range of feedrates that can be specified.

5.4
DWELL (G04)

Format

Dwell G04 X_; or G04 U_; or G04 P_;
X_: Specify a time (decimal point permitted)
U_: Specify a time (decimal point permitted)
P_: Specify a time (decimal point not permitted)

Explanations
By specifying a dwell, the execution of the next block is delayed by the specified time.
Bit 1 (DWL) of parameter No. 3405 can specify dwell for each rotation in feed per rotation mode (G99).

Table 5.4 (a)
Command value range of the dwell time (Command by X or U)

<table>
<thead>
<tr>
<th>Increment system</th>
<th>Command value range</th>
<th>Dwell time unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS–B</td>
<td>0.001 to 99999.999</td>
<td>s or rev</td>
</tr>
<tr>
<td>IS–C</td>
<td>0.0001 to 9999.9999</td>
<td></td>
</tr>
</tbody>
</table>

Table 5.4 (b)
Command value range of the dwell time (Command by P)

<table>
<thead>
<tr>
<th>Increment system</th>
<th>Command value range</th>
<th>Dwell time unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS–B</td>
<td>1 to 999999999</td>
<td>0.001 s or rev</td>
</tr>
<tr>
<td>IS–C</td>
<td>1 to 999999999</td>
<td>0.0001 s or rev</td>
</tr>
</tbody>
</table>
A CNC machine tool has a special position where, generally, the tool is exchanged or the coordinate system is set, as described later. This position is referred to as a reference position.
6.1 REFERENCE POSITION RETURN

- Reference position

The reference position is a fixed position on a machine tool to which the tool can easily be moved by the reference position return function. For example, the reference position is used as a position at which tools are automatically changed. Up to four reference positions can be specified by setting coordinates in the machine coordinate system in parameters (No. 1240 to 1243).

![Fig. 6.1 (a) Machine zero point and reference positions](image-url)
Tools are automatically moved to the reference position via an intermediate position along a specified axis. When reference position return is completed, the lamp for indicating the completion of return goes on.

![Fig. 6.2 (b) Reference position return](image)

The reference position return check (G27) is the function which checks whether the tool has correctly returned to the reference position as specified in the program. If the tool has correctly returned to the reference position along a specified axis, the lamp for the axis goes on.

Format

Reference position return

- **G28 IP_;** Reference position return
- **G30 P2 IP_;** 2nd reference position return
- **G30 P3 IP_;** 3rd reference position return
- **G30 P4 IP_;** 4th reference position return

*IP_; Command specifying the intermediate position
(Absolute/incremental command)

(P2 can be omitted.)

Reference position return check

- **G27 IP_;**

 *IP_; Command specifying the reference position
 (Absolute/incremental command)*
Explanations

- **Reference position return (G28)**
 Positioning to the intermediate or reference positions are performed at the rapid traverse rate of each axis. Therefore, for safety, the tool nose radius compensation, and tool offset should be cancelled before executing this command.

- **2nd, 3rd, and 4th reference position return (G30)**
 In a system without an absolute-position detector, the first, third, and fourth reference position return functions can be used only after the reference position return (G28) or manual reference position return (see III–3.1) is made. The G30 command is generally used when the automatic tool changer (ATC) position differs from the reference position.

- **Reference position return check (G27)**
 G27 command positions the tool at rapid traverse rate. If the tool reaches the reference position, the reference position return lamp lights up. However, if the position reached by the tool is not the reference position, an alarm (No. 092) is displayed.

Restrictions

- **Status the machine lock being turned on**
 The lamp for indicating the completion of return does not go on when the machine lock is turned on, even when the tool has automatically returned to the reference position. In this case, it is not checked whether the tool has returned to the reference position even when a G27 command is specified.

- **First return to the reference position after the power has been turned on (without an absolute position detector)**
 When the G28 command is specified when manual return to the reference position has not been performed after the power has been turned on, the movement from the intermediate point is the same as in manual return to the reference position. In this case, the tool moves in the direction for reference position return specified in parameter ZMIx (bit 5 of No. 1006). Therefore the specified intermediate position must be a position to which reference position return is possible.

- **Reference position return check in an offset mode**
 In an offset mode, the position to be reached by the tool with the G27 command is the position obtained by adding the offset value. Therefore, if the position with the offset value added is not the reference position, the lamp does not light up, but an alarm is displayed instead. Usually, cancel offsets before G27 is commanded.

- **Lighting the lamp when the programmed position does not coincide with the reference position**
 When the machine tool is an inch system with metric input, the reference position return lamp may also light up even if the programmed position is shifted from the reference position by least input increment. This is because the least input increment of the machine is smaller than its least command increment.

Reference

- **Manual reference position return**
 See III–3.1.
By teaching the CNC a desired tool position, the tool can be moved to the position. Such a tool position is represented by coordinates in a coordinate system. Coordinates are specified using program axes. When two program axes, the X-axis and Z-axis, are used, coordinates are specified as follows:

\[X.Z. \]

This command is referred to as a dimension word.

Coordinates are specified in one of the following three coordinate systems:

1. Machine coordinate system
2. Workpiece coordinate system
3. Local coordinate system

The number of the axes of a coordinate system varies from one machine to another. So, in this manual, a dimension word is represented as IP_.

Fig. 7 Tool position specified by \(X\alpha Z\beta\)
7.1 MACHINE COORDINATE SYSTEM

The point that is specific to a machine and serves as the reference of the machine is referred to as the machine zero point. A machine tool builder sets a machine zero point for each machine. A coordinate system with a machine zero point set as its origin is referred to as a machine coordinate system. A machine coordinate system is set by performing manual reference position return after power-on (see III-3.1). A machine coordinate system, once set, remains unchanged until the power is turned off.

Format

```
G53 IP_;  
IP_; Absolute dimension word
```

Explanations

- **Selecting a machine coordinate system (G53)**

 When a position has been specified as a set of machine coordinates, the tool moves to that position by means of rapid traverse. G53, used for selecting the machine coordinate system, is a one-shot G code. Any commands based on the selected machine coordinate system are thus effective only in the block containing G53. The G53 command must be specified using absolute values. If incremental values are specified, the G53 command is ignored. When the tool is to be moved to a machine-specific position such as a tool change position, program the movement in a machine coordinate system based on G53.

Restrictions

- **Cancel of the compensation function**
 - When the G53 command is specified, cancel the tool nose radius compensation and tool offset.

- **G53 specification immediately after power-on**
 - Since the machine coordinate system must be set before the G53 command is specified, at least one manual reference position return or automatic reference position return by the G28 command must be performed after the power is turned on. This is not necessary when an absolute-position detector is attached.

Reference

When manual reference position return is performed after power-on, a machine coordinate system is set so that the reference position is at the coordinate values of \((\alpha, \beta)\) set using parameter No.1240.
7.2 WORKPIECE COORDINATE SYSTEM

A coordinate system used for machining a workpiece is referred to as a workpiece coordinate system. A workpiece coordinate system is to be set with the NC beforehand (setting a workpiece coordinate system). A machining program sets a workpiece coordinate system (selecting a workpiece coordinate system). A set workpiece coordinate system can be changed by shifting its origin (changing a workpiece coordinate system).

7.2.1 Setting a Workpiece Coordinate System

A workpiece coordinate system can be set using one of three methods:

1) Method using G50
 A workpiece coordinate system is set by specifying a value after G50 in the program.

2) Automatic setting
 If bit 0 of parameter No. 1201 is set beforehand, a workpiece coordinate system is automatically set when manual reference position return is performed (see Part III–3.1.). This function is, however, disabled when the workpiece coordinate system option is being used.

3) Input using the MDI panel
 Six workpiece coordinate systems can be set beforehand using the MDI panel (see Part III–3.1.). When an absolute command is used, a workpiece coordinate system must be established in any of the ways described above.

Format

- Setting a workpiece coordinate system by G50

 G50 IP_

Explanations

A workpiece coordinate system is set so that a point on the tool, such as the tool tip, is at specified coordinates. If IP is an incremental command value, the work coordinate system is defined so that the current tool position coincides with the result of adding the specified incremental value to the coordinates of the previous tool position. If a coordinate system is set using G50 during offset, a coordinate system in which the position before offset matches the position specified in G50 is set.
Examples

Example 1
Setting the coordinate system by the G50X128.7Z375.1; command (Diameter designation)

![Example 1 Diagram]

Example 2
Setting the coordinate system by the G50X1200.0Z700.0; command (Diameter designation)

![Example 2 Diagram]
The user can choose from set workpiece coordinate systems as described below. (For information about the methods of setting, see Subsec. II–7.2.1.)

1. **G50 or automatic workpiece coordinate system setting**
 Once a workpiece coordinate system is selected, absolute commands work with the workpiece coordinate system.

2. **Choosing from six workpiece coordinate systems set using the MDI**
 By specifying a G code from G54 to G59, one of the workpiece coordinate systems 1 to 6 can be selected.

 - G54 Workpiece coordinate system 1
 - G55 Workpiece coordinate system 2
 - G56 Workpiece coordinate system 3
 - G57 Workpiece coordinate system 4
 - G58 Workpiece coordinate system 5
 - G59 Workpiece coordinate system 6

 Workpiece coordinate system 1 to 6 are established after reference position return after the power is turned on. When the power is turned on, G54 coordinate system is selected.

 When bit 2 (G50) of parameter No. 1202 is set to 1, executing the G50 command results in the issue of P/S alarm No. 10. This is designed to prevent the user from confusing coordinate systems.

Examples

```
G55 G00 X100.0 Z40.0 ;
```

In this example, positioning is made to positions (X=100.0, Z=40.0) in workpiece coordinate system 2.

![Diagram](image)

Fig. 7.2.2
The six workpiece coordinate systems specified with G54 to G59 can be changed by changing an external workpiece zero point offset value or workpiece zero point offset value.

Three methods are available to change an external workpiece zero point offset value or workpiece zero point offset value.

1. Inputting from the MDI panel (see III–11.4.10)
2. Programming by G10 or G50
3. Using the external data input function

An external workpiece origin offset can be changed by using a signal input to the CNC. For details, refer to the relevant manual supplied by the machine tool builder.

Format

- **Changing by G10**

  ```plaintext
  G10 L2 Pp IP_;
  p=0 : External workpiece zero point offset value
  p=1 to 6 : Workpiece zero point offset value correspond to workpiece coordinate system 1 to 6
  IP : For an absolute command (G90), workpiece zero point offset for each axis.
  For an incremental command (G91), value to be added to the set workpiece zero point offset for each axis (the sum is set as the new offset).
  ```

- **Changing by G50**

  ```plaintext
  G50 IP_;
  ```
With the G10 command, each workpiece coordinate system can be changed separately.

By specifying G50IP_;, a workpiece coordinate system (selected with a code from G54 to G59) is shifted to set a new workpiece coordinate system so that the current tool position matches the specified coordinates (IP_).

If IP is an incremental command value, the work coordinate system is defined so that the current tool position coincides with the result of adding the specified incremental value to the coordinates of the previous tool position. (Coordinate system shift)

Then, the amount of coordinate system shift is added to all the workpiece zero point offset values. This means that all the workpiece coordinate systems are shifted by the same amount.

Examples

![Diagram showing coordinate system shift](image)

If G50X100Z100; is commanded when the tool is positioned at (200, 160) in G54 mode, workpiece coordinate system 1 (X' – Z') shifted by vector A is created.

Suppose that a G54 workpiece coordinate system is specified. Then, a G55 workpiece coordinate system where the black circle on the tool (figure at the left) is at (600.0, 1200.0) can be set with the following command if the relative relationship between the G54 workpiece coordinate system and G55 workpiece coordinate system is set correctly: G50X600.0Z1200.0. Also, suppose that pallets are loaded at two different positions. If the relative relationship of the coordinate systems of the pallets at the two positions is correctly set by handling the coordinate systems as the G54 workpiece coordinate system and G55 workpiece coordinate system, a coordinate system shift with G50 in one pallet causes the same coordinate system shift in the other pallet. This means that workpieces on two pallets can be machined with the same program just by specifying G54 or G55.
7.2.4 Workpiece Coordinate System Preset (G92.1)

The workpiece coordinate system preset function presets a workpiece coordinate system shifted by manual intervention to the pre-shift workpiece coordinate system. The latter system is displaced from the machine zero point by a workpiece zero point offset value.

There are two methods for using the workpiece coordinate system preset function. One method uses a programmed command (G92.1). The other uses MDI operations on the absolute position display screen, relative position display screen, and overall position display screen (III – 11.1.4).

Format

```
G92.1 IP 0 ;  \( G50.3 \ P0 ; \) for G code system A
```

- **IP 0 ;** Specifies axis addresses subject to the workpiece coordinate system preset operation. Axes that are not specified are not subject to the preset operation.

Explanations

When manual reference position return operation is performed in the reset state, a workpiece coordinate system is shifted by the workpiece zero point offset value from the machine coordinate system zero point. Suppose that the manual reference position return operation is performed when a workpiece coordinate system is selected with G54. In this case, a workpiece coordinate system is automatically set which has its zero point displaced from the machine zero point by the G54 workpiece zero point offset value; the distance from the zero point of the workpiece coordinate system to the reference position represents the current position in the workpiece coordinate system.

If an absolute position detector is provided, the workpiece coordinate system automatically set at power-up has its zero point displaced from the machine zero point by the G54 workpiece zero point offset value. The machine position at the time of power-up is read from the absolute position detector and the current position in the workpiece coordinate system is set by subtracting the G54 workpiece zero point offset value from this machine position. The workpiece coordinate system set by these operations is shifted from the machine coordinate system using the commands and operations listed next page.

(a) Manual intervention performed when the manual absolute signal is off
(b) Move command executed in the machine lock state
(c) Movement by handle interrupt
(d) Operation using the mirror image function
(e) Setting the local coordinate system using G52, or shifting the workpiece coordinate system using G92
In the case of (a) above, the workpiece coordinate system is shifted by the amount of movement during manual intervention.

In the operation above, a workpiece coordinate system once shifted can be preset using G code specification or MDI operation to a workpiece coordinate system displaced by a workpiece zero point offset value from the machine zero point. This is the same as when manual reference position return operation is performed on a workpiece coordinate system that has been shifted. In this example, such G code specification or MDI operation has the effect of returning workpiece coordinate system zero point WZn to the original zero point WZo, and the distance from WZo to Pn is used to represent the current position in the workpiece coordinate system.

Bit 3 (PPD) of parameter No. 3104 specifies whether to preset relative coordinates (RELATIVE) as well as absolute coordinates.

When no workpiece coordinate system option (G54 to G59) is selected, the workpiece coordinate system is preset to the coordinate system set by automatic workpiece coordinate system setting. When automatic workpiece coordinate system setting is not selected, the workpiece coordinate system is preset with its zero point placed at the reference position.

Restrictions

- **Cutter compensation, tool length compensation, tool offset**
- **Program restart**
- **Prohibited modes**

When using the workpiece coordinate system preset function, cancel compensation modes: cutter compensation, tool length compensation, and tool offset. If the function is executed without cancelling these modes, compensation vectors are temporarily cancelled.

The workpiece coordinate system preset function is not executed during program restart.

Do not use the workpiece coordinate system preset function when the scaling, coordinate system rotation, programmable image, or drawing copy mode is set.
7.2.5 Workpiece Coordinate System Shift

When the coordinate system actually set by the G50 command or the automatic system setting deviates from the programmed work system, the set coordinate system can be shifted (see III–3.1). Set the desired shift amount in the work coordinate system shift memory.

Explanations

![Diagram showing workpiece coordinate system shift]

Fig. 7.2.5 Workpiece coordinate system shift

See Section 11.4.5 of Part III for how to specify the distance the work coordinate system is shifted.
When a program is created in a workpiece coordinate system, a child workpiece coordinate system may be set for easier programming. Such a child coordinate system is referred to as a local coordinate system.

Format

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G52 IP_ ;</td>
<td>Setting the local coordinate system</td>
</tr>
<tr>
<td>.....</td>
<td></td>
</tr>
<tr>
<td>G52 IP 0 ;</td>
<td>Canceling of the local coordinate system</td>
</tr>
<tr>
<td>IP_ :</td>
<td>Origin of the local coordinate system</td>
</tr>
</tbody>
</table>

Explanations

By specifying G52IP_;, a local coordinate system can be set in all the workpiece coordinate systems (G54 to G59). The origin of each local coordinate system is set at the position specified by IP_ in the workpiece coordinate system.

Once a local coordinate system is established, the coordinates in the local coordinate system are used in an axis shift command. The local coordinate system can be changed by specifying the G52 command with the zero point of a new local coordinate system in the workpiece coordinate system.

To cancel the local coordinate system and specify the coordinate value in the workpiece coordinate system, match the zero point of the local coordinate system with that of the workpiece coordinate system.

![Fig. 7.3 Setting the local coordinate system](image-url)
WARNING
1 The local coordinate system setting does not change the workpiece and machine coordinate systems.
2 When G50 is used to define a work coordinate system, if coordinates are not specified for all axes of a local coordinate system, the local coordinate system remains unchanged. If coordinates are specified for any axis of a local coordinate system, the local coordinate system is canceled.
3 G52 cancels the offset temporarily in tool nose radius compensation.
4 Command a move command immediately after the G52 block in the absolute mode.
5 Whether the local coordinate system is canceled upon reset depends on the specified parameters. The local coordinate system is canceled upon reset when bit 6 (CLR) of parameter No. 3402 or bit 3 (RLC) of parameter No. 1202 is set to 1.
6 Whether manual reference position return cancels the local coordinate system depends on the setting of ZCL (bit 2 of parameter No. 1201).
7.4 PLANE SELECTION

Select the planes for circular interpolation, tool nose radius compensation, coordinate system rotation, and drilling by G–code. The following table lists G–codes and the planes selected by them.

Explanations

Table 7.4 Plane selected by G code

<table>
<thead>
<tr>
<th>G code</th>
<th>Selected plane</th>
<th>Xp</th>
<th>Yp</th>
<th>Zp</th>
</tr>
</thead>
<tbody>
<tr>
<td>G17</td>
<td>Xp, Yp plane</td>
<td>X–axis or an axis parallel to it</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G18</td>
<td>Zp, Xp plane</td>
<td>Y–axis or an axis parallel to it</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G19</td>
<td>Yp, Zp plane</td>
<td>Z–axis or an axis parallel to it</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Xp, Yp, Zp are determined by the axis address appeared in the block in which G17, G18 or G19 is commanded.

When an axis address is omitted in G17, G18 or G19 block, it is assumed that the addresses of basic three axes are omitted.

Parameter No. 1022 specifies whether each axis is a basic axis (X–axis, Y–axis, or Z–axis) or an axis parallel to a basic axis.

The plane is unchanged in the block in which G17, G18 or G19 is not commanded.

When the power is turned on, G18 (ZX plane) is selected.

The movement instruction is irrelevant to the plane selection.

NOTE

1. U–, V–, and W–axes (parallel to a basic axis) can be used with G–codes B and C.

2. Direct drawing dimension programming, chamfering, corner R, multiple repetitive canned cycle, and simple canned cycle are enabled only for the ZX plane.

Specifying these functions for other planes causes P/S alarm No. 212 to be generated.

Examples

Plane selection when the X–axis is parallel with the U–axis.

G17X_Y_; XY plane,
G17U_Y_; UY plane
G18X_Z_; ZX plane
 X_Y_; Plane is unchanged (ZX plane)
G17; XY plane
G18; ZX plane
G17U_; UY plane
G18Y_; ZX plane, Y axis moves regardless without any relation to the plane.
This chapter contains the following topics.

8.1 ABSOLUTE AND INCREMENTAL PROGRAMMING (G90, G91)
8.2 INCH/METRIC CONVERSION (G20, G21)
8.3 DECIMAL POINT PROGRAMMING
8.4 DIAMETER AND RADIUS PROGRAMMING
There are two ways to command travels of the tool; the absolute command, and the incremental command. In the absolute command, coordinate value of the end position is programmed; in the incremental command, move distance of the position itself is programmed. G90 and G91 are used to command absolute or incremental command, respectively.

Absolute programming or incremental programming is used depending on the command used. See following tables.

Format

- **G code system A**

<table>
<thead>
<tr>
<th>Command method</th>
<th>Address word</th>
<th>G code system</th>
</tr>
</thead>
<tbody>
<tr>
<td>G90, G91</td>
<td></td>
<td>B or C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>G code system</th>
<th>Absolute command</th>
<th>Incremental command</th>
</tr>
</thead>
<tbody>
<tr>
<td>B or C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **G code system B or C**

<table>
<thead>
<tr>
<th>G code system B or C</th>
<th>Absolute command</th>
<th>Incremental command</th>
</tr>
</thead>
<tbody>
<tr>
<td>G90 IP_;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G91 IP_;</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Examples

- **Tool movement from point P to point Q (diameter programming is used for the X-axis)**

<table>
<thead>
<tr>
<th>G code system A</th>
<th>G code system B or C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute command</td>
<td>X400.0 Z50.0 ;</td>
</tr>
<tr>
<td>Incremental command</td>
<td>G90 X400.0 Z50.0 ;</td>
</tr>
<tr>
<td></td>
<td>U200.0 W–400.0 ;</td>
</tr>
<tr>
<td></td>
<td>G91 X200.0 Z–400.0 ;</td>
</tr>
</tbody>
</table>

NOTE

1. Absolute and incremental commands can be used together in a block.
 In the above example, the following command can be specified:
 X400.0 W–400.0 ;
2. When both X and U or W and Z are used together in a block, the one specified later is effective.
3. Incremental commands cannot be used when names of the axes are A and B during G code system A is selected.
Either inch or metric input can be selected by G code.

8.2 INCH/METRIC CONVERSION (G20, G21)

Format

<table>
<thead>
<tr>
<th>G20</th>
<th>Inch input</th>
</tr>
</thead>
<tbody>
<tr>
<td>G21</td>
<td>mm input</td>
</tr>
</tbody>
</table>

This G code must be specified in an independent block before setting the coordinate system at the beginning of the program. After the G code for inch/metric conversion is specified, the unit of input data is switched to the least inch or metric input increment of increment system IS–B or IS–C (Section II–2.3). The unit of data input for degrees remains unchanged.

The unit systems for the following values are changed after inch/metric conversion:

- Feedrate commanded by F code
- Positional command
- Work zero point offset value
- Tool compensation value
- Unit of scale for manual pulse generator
- Movement distance in incremental feed
- Some parameters

When the power is turned on, the G code is the same as that held before the power was turned off.

WARNING

1. G20 and G21 must not be switched during a program.
2. When switching inch input (G20) to metric input (G21) and vice versa, the tool compensation value must be re–set according to the least input increment.

 However, when bit 0 (OIM) of parameter 5006 is 1, tool compensation values are automatically converted and need not be re–set.

CAUTION

Movement from the intermediate point is the same as that for manual reference position return. The direction in which the tool moves from the intermediate point is the same as the reference position return direction, as specified with bit 5 (ZMI) of parameter No. 1006.

NOTE

1. When the least input increment and the least command increment systems are different, the maximum error is half of the least command increment. This error is not accumulated.
2. The inch and metric input can also be switched using setting of data setting (III–11.4.7).
8.3 DECIMAL POINT PROGRAMMING

Numerical values can be entered with a decimal point. A decimal point can be used when entering a distance, time, or speed. Decimal points can be specified with the following addresses: X, Y, Z, U, V, W, A, B, C, I, J, K, R, and F.

Explanations

There are two types of decimal point notation: calculator-type notation and standard notation.

When calculator-type decimal notation is used, a value without decimal point is considered to be specified in millimeters. When standard decimal notation is used, such a value is considered to be specified in least input increments. Select either calculator-type or standard decimal notation by using the DPI bit (bit 0 of parameter 3401). Values can be specified both with and without decimal point in a single program.

Examples

<table>
<thead>
<tr>
<th>Program command</th>
<th>Pocket calculator type decimal point programming</th>
<th>Standard type decimal point programming</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1000</td>
<td>1000mm Unit: mm</td>
<td>1mm Unit: Least input increment (0.001 mm)</td>
</tr>
<tr>
<td>Command value without decimal point</td>
<td>1000mm Unit: mm</td>
<td>1000mm Unit: mm</td>
</tr>
<tr>
<td>X1000.0</td>
<td>Command value with decimal point</td>
<td></td>
</tr>
</tbody>
</table>

WARNING

In a single block, specify a G code before entering a value. The position of decimal point may depend on the command.

Examples:
- G20; Input in inches
- X1.0 G04; X1.0 is considered to be a distance and processed as X10000. This command is equivalent to G04 X10000. The tool dwells for 10 seconds.
- G04 X1.0; Equivalent to G04 X1000. The tool dwells for one second.

NOTE

1. Fractions less than the least input increment are truncated.

Examples:
- X1.23456; Truncated to X1.234 when the least input increment is 0.001 mm. Processed as X1.2345 when the least input increment is 0.0001 inch.

2. When more than eight digits are specified, an alarm occurs. If a value is entered with a decimal point, the number of digits is also checked after the value is converted to an integer according to the least input increment.

Examples:
- X1.23456789; P/S alarm 003 occurs because more than eight digits are specified.
- X123456.7; If the least input increment is 0.001 mm, the value is converted to integer 123456700. Because the integer has more than eight digits, an P/S alarm 003 occurs.
Since the work cross section is usually circular in CNC lathe control programming, its dimensions can be specified in two ways:

Diameter and Radius

When the diameter is specified, it is called diameter programming and when the radius is specified, it is called radius programming.

Radius programming or diameter programming can be specified by parameter DIA (No.1006#3). When using diameter programming, note the conditions listed in the table 8.4.

Table 8.4 Notes on specifying diameter value

<table>
<thead>
<tr>
<th>Item</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>X axis command</td>
<td>Specified with a diameter value</td>
</tr>
<tr>
<td>Incremental command</td>
<td>Specified with a diameter value</td>
</tr>
<tr>
<td></td>
<td>In the above figure, specifies D2 minus D1</td>
</tr>
<tr>
<td></td>
<td>for tool path B to A.</td>
</tr>
<tr>
<td>Coordinate system setting (G50)</td>
<td>Specifies a coordinate value with a diameter</td>
</tr>
<tr>
<td></td>
<td>value</td>
</tr>
<tr>
<td>Component of tool offset value</td>
<td>Parameter (No.5004#1) determines either</td>
</tr>
<tr>
<td></td>
<td>diameter or radius value</td>
</tr>
<tr>
<td>Parameters in canned cycle, such</td>
<td>Specifies a radius value</td>
</tr>
<tr>
<td>as cutting depth along X axis. (R)</td>
<td></td>
</tr>
<tr>
<td>Radius designation in circular</td>
<td>Specifies a radius value</td>
</tr>
<tr>
<td>interpolation (R, I, K, and etc.)</td>
<td></td>
</tr>
<tr>
<td>Feedrate along axis</td>
<td>Specifies change of radius/rev. or change of</td>
</tr>
<tr>
<td></td>
<td>radius/min.</td>
</tr>
<tr>
<td>Display of axis position</td>
<td>Displayed as diameter value</td>
</tr>
</tbody>
</table>
The spindle speed can be controlled by specifying a value following address S.
In addition, the spindle can be rotated by a specified angle.
This chapter contains the following topics.

9.1 SPECIFYING THE SPINDLE SPEED WITH A CODE
9.2 SPECIFYING THE SPINDLE SPEED VALUE DIRECTLY (S5–DIGIT COMMAND)
9.3 CONSTANT SURFACE SPEED CONTROL (G96, G97)
9.4 SPINDLE SPEED FLUCTUATION DETECTION FUNCTION (G25, G26)
9.5 SPINDLE POSITIONING FUNCTION
9. SPINDLE SPEED FUNCTION

9.1 SPECIFYING THE SPINDLE SPEED WITH A CODE

Specifying a value following address S sends code and strobe signals to the machine. On the machine, the signals are used to control the spindle speed. A block can contain only one S code. Refer to the appropriate manual provided by the machine tool builder for details such as the number of digits in an S code or the execution order when a move command and an S code command are in the same block.

9.2 SPECIFYING THE SPINDLE SPEED VALUE DIRECTLY (S5–DIGIT COMMAND)

The spindle speed can be specified directly by address S followed by a five-digit value (min⁻¹). The unit for specifying the spindle speed may vary depending on the machine tool builder. Refer to the appropriate manual provided by the machine tool builder for details.
Specify the surface speed (relative speed between the tool and workpiece) following S. The spindle is rotated so that the surface speed is constant regardless of the position of the tool.

- **Constant surface speed control command**

  ```
  G96 S______ ;
  ↑Surface speed (m/min or feet/min)
  
  Note: This surface speed unit may change according to machine tool builder's specification.
  ```

- **Constant surface speed control cancel command**

  ```
  G97 S______ ;
  ↑Spindle speed (min⁻¹)
  
  Note: This surface speed unit may change according to machine tool builder's specification.
  ```

- **Clamp of maximum spindle speed**

  ```
  G50 S_ ; The maximum spindle speed (min⁻¹) follows S.
  ```
G96 (constant surface speed control command) is a modal G code. After a G96 command is specified, the program enters the constant surface speed control mode (G96 mode) and specified S values are assumed as a surface speed. A G96 command must specify the axis along which constant surface speed control is applied. A G97 command cancels the G96 mode. When constant surface speed control is applied, a spindle speed higher than the value specified in G50S_; (maximum spindle speed) is clamped at the maximum spindle speed. When the power is turned on, the maximum spindle speed is not yet set and the speed is not clamped. S (surface speed) commands in the G96 mode are assumed as S = 0 (the surface speed is 0) until M03 (rotating the spindle in the positive direction) or M04 (rotating the spindle in the negative direction) appears in the program.

To execute the constant surface speed control, it is necessary to set the work coordinate system, Z axis, (axis to which the constant surface speed control applies) becomes zero.

Fig. 9.3 (a) Relation between workpiece radius, spindle speed and surface speed

The spindle speed (min\(^{-1}\)) almost coincides with the surface speed (m/min) at approx. 160 mm (radius).

Fig. 9.3 (b) Example of the workpiece coordinate system for constant surface speed control

• Surface speed specified in the G96 mode

<table>
<thead>
<tr>
<th>G96 mode</th>
<th>G97 mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify the surface speed in m/min (or feet/min)</td>
<td>Store the surface speed in m/min (or feet/min)</td>
</tr>
<tr>
<td>G97 command</td>
<td>Specified</td>
</tr>
<tr>
<td></td>
<td>The specified spindle speed (min⁻¹) is used</td>
</tr>
<tr>
<td></td>
<td>Not specified</td>
</tr>
<tr>
<td></td>
<td>The surface speed (m/min or feet/min) is converted to the spindle speed (min⁻¹)</td>
</tr>
<tr>
<td></td>
<td>Commands other than G96</td>
</tr>
<tr>
<td></td>
<td>G96 command</td>
</tr>
</tbody>
</table>

The specified surface speed is used

Command for the surface speed

Not specified

The stored surface speed (m/min or feet/min) is used. If no surface speed is stored, 0 is assumed.

Restrictions

• Constant surface speed control for threading

The constant surface speed control is also effective during threading. Accordingly, it is recommended that the constant surface speed control be invalidated with G97 command before starting the scroll threading and taper threading, because the response problem in the servo system may not be considered when the spindle speed changes.
In a rapid traverse block specified by G00, the constant surface speed control is not made by calculating the surface speed to a transient change of the tool position, but is made by calculating the surface speed based on the position at the end point of the rapid traverse block, on the condition that cutting is not executed at rapid traverse.

Example

```
N8  G00 X1000.0Z1400.0;
N9   T33;
N11  X400.0Z1050.0;  \(\text{Designation of max. spindle speed}\)
N12  G50S3000;  \(\text{Surface speed 200m/min}\)
N13  G96S200;  \(\text{Surface speed 200m/min}\)
N14  G01 Z 700.0F1000;
N15  X600.0Z 400.0;
N16  Z ...;
```

The CNC calculates the spindle speed which is proportional to the specified surface speed at the position of the programmed coordinate value on the X axis. This is not the value calculated according to the X axis coordinate after offset when offset is valid. At the end point N15 in the example above, the speed at 600 dia. (Which is not the turret center but the tool nose) is 200 m/min. If X axis coordinate value is negative, the CNC uses the absolute value.
With this function, an overheat alarm (No. 704) is raised when the spindle speed deviates from the specified speed due to machine conditions. This function is useful, for example, for preventing the seizure of the guide bushing.

G26 enables spindle speed fluctuation detection. G25 disables spindle speed fluctuation detection.

| G26 Pp Qq Rr ; | Spindle fluctuation detection on |
| G25 ; | Spindle fluctuation detection off |

\(p \) : Time (in ms) from the issue of a new spindle rotation command (S command) to the start of checking whether the actual spindle speed is so fast that an overheat can occur. When a specified speed is reached within the time period of \(p \), spindle speed is checked at that time.

\(q \) : Tolerance (%) of a specified spindle speed

\[
q = \frac{1 - \text{actual spindle speed}}{\text{specified spindle speed}} \times 100
\]

If a specified spindle speed lies within this range, it is regarded as having reached the specified value. Then, an actual spindle speed is checked.

\(r \) : Spindle speed fluctuation (%) at which the actual spindle speed is so fast that an overheat can occur

\[
r = \frac{1 - \text{speed that can cause overheat}}{\text{specified spindle speed}} \times 100
\]

G26 enables the spindle speed fluctuation detection function, and G25 disables the spindle speed fluctuation detection. Even if G25 is specified, \(p, q, \) and \(r \) are not cleared.
The fluctuation of the spindle speed is detected as follows:

1. **When an alarm is issued after a specified spindle speed is reached**

 ![Diagram](image1)

 Specified speed: (Speed specified by address S and five-digit value) \(\times\) (spindle override)

 Actual speed: Speed detected with a position coder

 \(p\): Time elapses since the specified speed changes until a check starts.

 \(q\): (Percentage tolerance for a check to start) \(\times\) (specified speed)

 \(r\): (Percentage fluctuation detected as an alarm condition) \(\times\) (specified speed)

 \(d\): Fluctuation detected as an alarm (specified in parameter 4913)

 An alarm is issued when the difference between the specified speed and the actual speed exceeds both \(r\) and \(d\).

2. **When an alarm is issued before a specified spindle speed is reached**

 ![Diagram](image2)
NOTE
1 When an alarm is issued in automatic operation, a single block stop occurs. The spindle overheat alarm is indicated on the CRT screen, and the alarm signal “SPAL” is output (set to 1 for the presence of an alarm). This signal is cleared by resetting.
2 Even when reset operation is performed after an alarm occurs, the alarm is issued again unless the cause of the alarm is corrected.
3 No check is made during spindle stop state (*SSTP = 0).
4 By setting the parameter (No. 4913), an allowable range of speed fluctuations can be set which suppresses the occurrence of an alarm. However, an alarm is issued one second later if the actual speed is found to be 0 min⁻¹.
5 The values of p, q, and r specified in the G26 block are set in the following parameters. If the specification of p, q, or r is omitted, the value set in the corresponding parameter is referenced.
 p : Parameter No. 4914
 q : Parameter No. 4911
 r : Parameter No. 4912
6 Bit 0 (FLR) of parameter No. 4900 can be used to specify 0.1% as the units of the specified q and r values.
9.5 SPINDLE POSITIONING FUNCTION

In turning, the spindle connected to the spindle motor is rotated at a certain speed to rotate the workpiece mounted on the spindle. The spindle positioning function turns the spindle connected to the spindle motor by a certain angle to position the workpiece mounted on the spindle at a certain angle. The spindle is positioned about the C-axis.

The spindle positioning function involves the following three operations:
1. Canceling the spindle rotation mode and entering the spindle positioning mode (spindle orientation)
2. Positioning the spindle in the spindle positioning mode
3. Canceling the spindle positioning mode, and entering the spindle rotation mode

9.5.1 Spindle Orientation

When spindle positioning is first performed after the spindle motor is used for normal spindle operation, or when spindle positioning is interrupted, the spindle orientation is required. Orientation permits the spindle to stop at a predetermined position. Orientation is directed by the M code set in parameter No. 4960. The direction of orientation can be set with a parameter. For the analog spindle, the direction is set in ZMIx (bit 5 of parameter 1006). For the serial spindle, it is set in RETRN (bit 5 of parameter 4005).

9.5.2 Spindle Positioning

- Positioning with a semi–fixed angle specified by an M code

The spindle can be positioned with an arbitrary angle or semi–fixed angle.

Address M is followed by a 2–digit numeric. The specifiable value may be one of the six values from Mα to M(α+5). Value α must be set in parameter No. 4962 beforehand. The positioning angles corresponding to Mα to M(α+5) are listed below. Value β must be set in parameter No. 4963 beforehand.

<table>
<thead>
<tr>
<th>M–code</th>
<th>Positioning angle</th>
<th>(Ex.)β=30°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mα</td>
<td>β</td>
<td>30°</td>
</tr>
<tr>
<td>M(α+1)</td>
<td>2β</td>
<td>60°</td>
</tr>
<tr>
<td>M(α+2)</td>
<td>3β</td>
<td>90°</td>
</tr>
<tr>
<td>M(α+3)</td>
<td>4β</td>
<td>120°</td>
</tr>
<tr>
<td>M(α+4)</td>
<td>5β</td>
<td>150°</td>
</tr>
<tr>
<td>M(α+5)</td>
<td>6β</td>
<td>180°</td>
</tr>
</tbody>
</table>

Specify the command with incremental values. The direction of rotation can be specified in parameter IDM (bit 1 of parameter 4950).
• **Positioning with a given angle specified by address C or H**

Specify the position using address C or H followed by a signed numeric value or numeric values. Addresses C and H must be specified in the G00 mode.

(Example) C–1000
H4500

The end point must be specified with a distance from the program reference position (in absolute mode) using address C. Alternatively, the end point must also be specified with a distance from the start point to the end point (in incremental mode) using address H.

A numeric with the decimal point can be entered.

The value must be specified in degrees.

(Example) C35.0=C35 degrees

• **Program reference position**

The position to which the spindle is oriented is assumed as the program reference position. The program reference position can be changed by setting of a coordinate system (G50) or automatic setting of a coordinate system (#OZPR of parameter 1202).

• **Feedrate for positioning**
The feedrate during positioning equals the rapid traverse speed specified in parameter No. 1420. Linear acceleration/deceleration is performed. For the specified speed, an override of 100%, 50%, 25%, and F0 (parameter No. 1421) can be applied.

The tool moves at the rapid traverse speed set in parameter No. 1420 until a sufficient speed for orientation is attained. After the speed for orientation has been attained, orientation is performed at the speed set in parameter No. 1425.

When modes are to be switched from spindle positioning to normal spindle rotation, the M code set in parameter No. 4961 is specified.

WARNING

1. Feed hold, dry run, machine lock, and auxiliary function lock cannot be performed during spindle positioning.
2. Parameter No. 4962 must always be set even when positioning with a semi-fixed angle specified in an M-code is not performed. If the parameter is not set, M-codes from the M00 to M05 do not function properly.

NOTE

1. Specify spindle positioning alone in a block. A move command for the X or Z axis cannot be specified within the same block.
2. When emergency stop is applied during spindle positioning, spindle positioning stops. To resume it, restart with the orientation step.
3. The serial spindle Cs-axis contour control function and the spindle positioning function cannot be used at a time. If both options are specified, the spindle positioning function has priority.
4. The spindle positioning axis is indicated in pulses in the machine coordinate system.
Two tool functions are available. One is the tool selection function, and the other is the tool life management function.
10.1 TOOL SELECTION

By specifying a 2-digit/4-digit numerical value following address T, a code signal and a strobe signal are transmitted to the machine tool. This is mainly used to select tools on the machine.

One T code can be commanded in a block. Refer to the machine tool builder’s manual for the number of digits commandable with address T and the correspondence between the T codes and machine operations.

When a move command and a T code are specified in the same block, the commands are executed in one of the following two ways:

1. Simultaneous execution of the move command and T function commands.
2. Executing T function commands upon completion of move command execution.

The selection of either sequence depends on the machine tool builder’s specifications. Refer to the machine tool builder’s manual for details.

1. Last one digit of T-code designates the offset number.

2. Last two digits of T-code designate the offset number.

Explanations

The value after the T code indicates the desired tool. Part of the values is also used as the offset number indicating the compensation amount for tool offset.

Refer to the machine tool builder’s manual for correspondence between the T-code and the tool and the number of digit to specify tool selection.

Example (T2+2)
N1G00X1000Z1400
N2T0313; (Select Tool No. 3 and Offset value No.13)
N3X400Z1050;
Some machines use a 1-digit value to specify tool selection.
10.2 TOOL LIFE MANAGEMENT

Tools are classified into some groups. For each group, a tool life (time or frequency of use) is specified. Each time a tool is used, the time for which the tool is used is accumulated. When the tool life has been reached, the next tool previously determined in the same group is used. This function is called the tool life management function.

With 2–path control, tool life management is performed for each tool post separately. So tool life management data is also set for each tool post.

10.2.1 Program of Tool Life Data

Tools used sequentially in each group and their tool life are registered in the CNC as following program format of table 10.2.1(a).

<table>
<thead>
<tr>
<th>Tape format</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_ _ _ _ ; G10L3;</td>
<td>Program number</td>
</tr>
<tr>
<td>P_ _ _ L_ _ _ _ ;</td>
<td>Start of setting tool life data</td>
</tr>
<tr>
<td>T_ _ _ ;</td>
<td>P___ : Group number (1 to 128)</td>
</tr>
<tr>
<td>T_ _ _ ;</td>
<td>L___ : Tool life (1 to 9999)</td>
</tr>
<tr>
<td>T_ _ _ ;</td>
<td>(1) T:____ Tool number</td>
</tr>
<tr>
<td>T_ _ _ ;</td>
<td>(2) Tools are selected from</td>
</tr>
<tr>
<td>:</td>
<td>(1) to (2) to ... to (n).</td>
</tr>
<tr>
<td>P_ _ _ L_ _ _ ;</td>
<td>(n)</td>
</tr>
<tr>
<td>T_ _ _ ;</td>
<td>Data for the next group</td>
</tr>
<tr>
<td>T_ _ _ ;</td>
<td></td>
</tr>
<tr>
<td>:</td>
<td></td>
</tr>
<tr>
<td>G11;</td>
<td>End of setting tool life data</td>
</tr>
<tr>
<td>M02(M30);</td>
<td>End of program</td>
</tr>
</tbody>
</table>

For the method of registering tool life data in CNC, refer to Subsec. III–11.4.14.
Explanations

- Specification by duration or number of times the tool has been used
 A tool life is specified either as the time of use (in minutes) or the frequency of use, which depends on the parameter setting parameter No. 6800#2(LTM).
 Up to 4300 minutes in time or 9999 times in frequency can be specified for a tool life.

- Maximum number of groups and tools
 The number of groups to be registered and the number of tools registered per group can be combined in three ways. One of the three combinations is set by a parameter No.6800#0,#1(Each GS1 and GS2).

<table>
<thead>
<tr>
<th>GS2 (No.6800#1)</th>
<th>GS1 (No.6800#0)</th>
<th>The Max. number of groups and tools without optional function of 128 tool pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Number of group 16 Number of tool 16</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Number of group 32 Number of tool 8</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Number of group 64 Number of tool 4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Number of group 16 Number of tool 16</td>
</tr>
</tbody>
</table>

In each of the cases listed above, the maximum number of tools which can be registered is 512 or 256 depending, respectively, on whether the option for 128 tool life control groups is used or not. When the option is not used, set the parameters as follows: For up to 16 groups, with up to 16 tools in each group, set GS1 = 0 and GS2 = 0. For up to 32 groups, with up to 8 tools in each group, set GS1 = 0 and GS2 = 1. To change the combination, change the parameter, then set program is executed with the old tool group combination set in the NC. Whenever the parameter is changed, be sure to reexecute the group setting program.

- A T code for registering tools
 The same tool number may appear anywhere any times in the program of tool life data.
 A T code for registering tools can usually consist of up to four digits. When the option for 128 tool life control groups is used, however, it can consist of up to six digits.

When using the tool life control function, do not use tool position offset parameters LD1 and LGN (bits 0 and 1 of parameter No. 5002).
Example

```
O0001;
G10L3;
P001L0150;
T0011;
T0132;
T0068;
P002L1400;
T0061;
T0241;
T0134;
T0074;
P003L0700;
T0012;
T0202;
G11;
M02;
```

Data of group 1

Data of group 2

Data of group 3

Explanations

The group numbers specified in P need not be serial. They need not be assigned to all groups, either. When using two or more offset numbers for the same tool in the same process, set as follows:

<table>
<thead>
<tr>
<th>Tape format</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>P004L0500; T0101; T0105; T0108; T0206; T0203; T0202; T0209; T0304; T0309; P005L1200; T0405;</td>
<td>The tools in group 4 are used from (1) to (2) to (3). Each tool is used 500 times (or for 500 minutes). When this group is specified three times in one process, the offset numbers are selected in the following orders: Tools (1): 01→05→08 Tools (2): 06→03→02→09 Tools (3): 04→09</td>
</tr>
</tbody>
</table>
10.2.2 Counting a Tool Life

Explanation

- When a tool life is specified as the time of use (in minutes)

 Between TΔΔ99(ΔΔ=Tool group number) and TΔΔ88 in a machining program, the time for which the tool is used in the cutting mode is counted at intervals of 4 seconds. The time taken for single-block stoppage, feed hold, rapid traverse, dwelling, and FIN wait is ignored. Up to 4300 minutes can be specified for a life.

- When a tool life is specified as the frequency of use

 Counting is performed for each process that is initiated by the cycle start of a machining program and ended when the NC is reset by the M02 or M03 command. The counters for tool groups used in a process are incremented by one. Even when the same group is specified more than once in one process, the counter is incremented only by one. Up to 9999 can be set for a tool life.

 Counting of a tool life is performed for each group. The life counter contents are not erased even when the power of CNC is cut off. When a life is specified as the frequency of use, apply an external reset (ERS) signal to the CNC when M02 or M30 is executed.
In machining programs, T codes are used to specify tool groups as follows:

<table>
<thead>
<tr>
<th>Tape format</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>T△△99;</td>
<td>Ends the tool used by now, and starts to use the tool of the △△ group. "99" distinguishes this specification from ordinary specification.</td>
</tr>
<tr>
<td>T△△88;</td>
<td>Cancels the offset of the tool of the group. "88" distinguishes this specification from ordinary specification.</td>
</tr>
<tr>
<td>M02(M300);</td>
<td>Ends the machining program.</td>
</tr>
</tbody>
</table>

In machining programs, T codes are used to specify tool groups as follows:

<table>
<thead>
<tr>
<th>Tape format</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO199;</td>
<td>Ends the previous tool, and starts to use the tool of the 01 group.</td>
</tr>
<tr>
<td>T0188;</td>
<td>Cancels the offset of the tool of the 01 group.</td>
</tr>
<tr>
<td>T0508;</td>
<td>Ends the tool of the 01 group. Selects tool number 05 and offset number 08.</td>
</tr>
<tr>
<td>T0500;</td>
<td>Cancels the offset of tool number 05.</td>
</tr>
<tr>
<td>T0299;</td>
<td>Ends tool number 05, and starts to use the tool of the 02 group.</td>
</tr>
<tr>
<td>T0199;</td>
<td>Ends the tool of the 02 group, and starts to use the tool of the 01 group. If more than one offset number is specified for the tool, the second offset number is selected. Otherwise, the previous offset number is used.</td>
</tr>
</tbody>
</table>

Explanations
There are two types of auxiliary functions; miscellaneous function (M code) for specifying spindle start, spindle stop program end, and so on, and secondary auxiliary function (B code).

When a move command and miscellaneous function are specified in the same block, the commands are executed in one of the following two ways:

i) Simultaneous execution of the move command and miscellaneous function commands.

ii) Executing miscellaneous function commands upon completion of move command execution.

The selection of either sequence depends on the machine tool builder’s specification. Refer to the manual issued by the machine tool builder for details.
When address M followed by a number is specified, a code signal and strobe signal are transmitted. These signals are used for turning on/off the power to the machine.

In general, only one M code is valid in a block but up to three M codes can be specified in a block (although some machines may not allow that). The correspondence between M codes and functions is up to the machine tool builder.

All M codes are processed in the machine except for M98, M99, M198, M codes for calling a subprogram (parameters Nos. 6071 to 6079), and M codes for calling a custom macro (parameters Nos. 6080 to 6089). Refer to the appropriate manual issued by the machine tool builder.

The following M codes have special meanings.

- **M02, M03**
 (End of program)

 This indicates the end of the main program.
 Automatic operation is stopped and the CNC unit is reset. This differs with the machine tool builder. After a block specifying the end of the program is executed, control returns to the start of the program. Bit 5 of parameter No. 3404 (M02) or bit 4 of parameter No. 3404 (M03) can be used to disable M02 or M03 from returning control to the start of the program.

- **M00**
 (Program stop)

 Automatic operation is stopped after a block containing M00 is executed. When the program is stopped, all existing modal information remains unchanged. The automatic operation can be restarted by actuating the cycle operation. This differs with the machine tool builder.

- **M01**
 (Optional stop)

 Similarly to M00, automatic operation is stopped after a block containing M01 is executed. This code is only effective when the Optional Stop switch on the machine operator's panel has been pressed.

- **M98**
 (Calling of subprogram)

 This code is used to call a subprogram. The code and strobe signals are not sent. See the subprogram section II–13.3 for details.

- **M99**
 (End of subprogram)

 This code indicates the end of a subprogram. M99 execution returns control to the main program. No code or strobe signal is sent. See the subprogram section II–13.3 for details.

- **M198**
 (Calling a subprogram)

 This code is used to call a subprogram of a file in the external input/output function. See the description of the subprogram call function (III–4.5) for details.

NOTE

A block immediately after an M00, M01, M02, or M03 block is not buffered. Similarly, ten M codes which do not buffer can be set by parameters (Nos. 3411 to 3421). Refer to the machine tool builder’s instruction manual for these M codes.
11.2 MULTIPLE M COMMANDS IN A SINGLE BLOCK

So far, one block has been able to contain only one M code. Up to three M codes can be specified in a single block when bit 7 (M3B) of parameter No. 3404 is set to 1.
Up to three M codes specified in a block are simultaneously output to the machine. This means that compared with the conventional method of a single M command in a single block, a shorter cycle time can be realized in machining.

CNC allows up to three M codes to be specified in one block. However, some M codes cannot be specified at the same time due to mechanical operation restrictions. For detailed information about the mechanical operation restrictions on simultaneous specification of multiple M codes in one block, refer to the manual of each machine tool builder.
M00, M01, M02, M30, M98, M99, or M198 must not be specified together with another M code.
Some M codes other than M00, M01, M02, M30, M98, M99, and M198 cannot be specified together with other M codes; each of those M codes must be specified in a single block.
Such M codes include these which direct the CNC to perform internal operations in addition to sending the M codes themselves to the machine. To be specified, such M codes are M codes for calling program numbers 9001 to 9009 and M codes for disabling advance reading (buffering) of subsequent blocks. Meanwhile, multiple of M codes that direct the CNC only to send the M codes themselves (without performing internal operations) can be specified in a single block.

Examples

<table>
<thead>
<tr>
<th>One M command in a single block</th>
<th>Multiple M commands in a single block</th>
</tr>
</thead>
<tbody>
<tr>
<td>M40 ; M50 ; M60 ; G28G91X0Z0 ;</td>
<td>M40M50M60 ; G28G91X0Z0 ;</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
</tr>
</tbody>
</table>
11.3 THE SECOND AUXILIARY FUNCTIONS (B CODES)

Indexing of the table is performed by address B and a following 8-digit number. The relationship between B codes and the corresponding indexing differs between machine tool builders. Refer to the manual issued by the machine tool builder for details.

Explanations

- **Command range**
 0 to 99999999

- **Command method**

 1. The decimal point can be used for input.

 Command Output value
 B10. 10000
 B10 10

 2. It is possible to change over the scale factor of B output, 1000 or 1 when the decimal point input is omitted, using the parameter DPI (No.3401#0).

 Command Output value
 When DPI is 1: B1 1000
 When DPI is 0: B1 1

 3. It is possible to change over the scale factor of B output 1000 or 10000 when the decimal point input is omitted in the inch input system, using the parameter AUX (No.3405#0) When DPI=1.

 Command Output value
 When AUX is 1: B1 10000
 When AUX is 0: B1 1000

Restrictions

When this functions is used, the B address specifying an axis movement disabled.
There are two program types, main program and subprogram. Normally, the CNC operates according to the main program. However, when a command calling a subprogram is encountered in the main program, control is passed to the subprogram. When a command specifying a return to the main program is encountered in a subprogram, control is returned to the main program.

The CNC memory can hold up to 400 main programs and subprograms (63 as standard). A main program can be selected from the stored main programs to operate the machine. See Chapter III–10 for the methods of registering and selecting programs.
A program consists of the following components:

Table 12 Program components

<table>
<thead>
<tr>
<th>Components</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tape start</td>
<td>Symbol indicating the start of a program file</td>
</tr>
<tr>
<td>Leader section</td>
<td>Used for the title of a program file, etc.</td>
</tr>
<tr>
<td>Program start</td>
<td>Symbol indicating the start of a program</td>
</tr>
<tr>
<td>Program section</td>
<td>Commands for machining</td>
</tr>
<tr>
<td>Comment section</td>
<td>Comments or directions for the operator</td>
</tr>
<tr>
<td>Tape end</td>
<td>Symbol indicating the end of a program file</td>
</tr>
</tbody>
</table>

Fig. 12(b) Program configuration

A program section consists of several blocks. A program section starts with a program number and ends with a program end code.

Program section configuration

<table>
<thead>
<tr>
<th>Program section</th>
<th>Program section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program number</td>
<td>O0001 ;</td>
</tr>
<tr>
<td>Block 1</td>
<td>N1 G91 G00 X120.0 Y80.0 ;</td>
</tr>
<tr>
<td>Block 2</td>
<td>N2 G43 Z–32.0 H01 ;</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>Block n</td>
<td>Nn Z0 ;</td>
</tr>
<tr>
<td>Program end</td>
<td>M30 ;</td>
</tr>
</tbody>
</table>

A block contains information necessary for machining, such as a move command or coolant on/off command. Specifying a value following a slash (/) at the start of a block disables the execution of some blocks (see “optional block skip” in Section II–12.2).
12.1 PROGRAM COMPONENTS OTHER THAN PROGRAM SECTIONS

This section describes program components other than program sections. See Section II–12.2 for a program section.

Explanations

- **Tape start**

 The tape start indicates the start of a file that contains CNC programs. The mark is not required when programs are entered using SYSTEM P or ordinary personal computers. The mark is not displayed on the display screen. However, if the file is output, the mark is automatically output at the start of the file.

<table>
<thead>
<tr>
<th>Name</th>
<th>ISO code</th>
<th>EIA code</th>
<th>Notation in this manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tape start</td>
<td>%</td>
<td>ER</td>
<td>%</td>
</tr>
</tbody>
</table>

- **Leader section**

 Data entered before the programs in a file constitutes a leader section. When machining is started, the label skip state is usually set by turning on the power or resetting the system. In the label skip state, all information is ignored until the first end-of-block code is read. When a file is read into the CNC unit from an I/O device, leader sections are skipped by the label skip function. A leader section generally contains information such as a file header. When a leader section is skipped, even a TV parity check is not made. So a leader section can contain any codes except the EOB code.

- **Program start**

 The program start code is to be entered immediately after a leader section, that is, immediately before a program section. This code indicates the start of a program, and is always required to disable the label skip function. With SYSTEM P or ordinary personal computers, this code can be entered by pressing the return key.

<table>
<thead>
<tr>
<th>Name</th>
<th>ISO code</th>
<th>EIA code</th>
<th>Notation in this manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program start</td>
<td>LF</td>
<td>CR</td>
<td>;</td>
</tr>
</tbody>
</table>
NOTE
If one file contains multiple programs, the EOB code for label skip operation must not appear before a second or subsequent program number. However, an program start is required at the start of a program if the preceding program ends with %.

• Comment section

Any information enclosed by the control–out and control–in codes is regarded as a comment and skipped by the CNC. The user can enter a header, comments, directions to the operator, etc. There is no limit on the length of a comment section.

Table 12.1(c) Codes of a control–in and a control–out

<table>
<thead>
<tr>
<th>Name</th>
<th>ISO code</th>
<th>EIA code</th>
<th>Notation in this manual</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control–out</td>
<td></td>
<td>2–4–5</td>
<td>(</td>
<td>Start of comment section</td>
</tr>
<tr>
<td>Control–in</td>
<td>)</td>
<td>2–4–7</td>
<td>)</td>
<td>End of comment section</td>
</tr>
</tbody>
</table>

When a program is read into memory for memory operation, comment sections, if any, are not ignored but are also read into memory. Note, however, that codes other than those listed in the code table in Appendix F are ignored, and thus are not read into memory. When the program in this memory is output to an external input/output device (see Section III–8), any comments are also output.

When a program is displayed on the screen, its comment sections are also displayed. However, those codes that were ignored when read into memory are not outputted or displayed.

During memory operation or DNC operation, all comment sections are ignored.

The TV check function can be used for a comment section by setting parameter CTV (bit 1 of No. 0100).

CAUTION
If a long comment section appears in the middle of a program section, a move along an axis may be suspended for a long time because of such a comment section. So a comment section should be placed where movement suspension may occur or no movement is involved.

NOTE
1 If only a control–in code is read with no matching control–out code, the read control–in code is ignored.
2 The EOB code cannot be used in a comment.
A tape end is to be placed at the end of a file containing NC programs. If programs are entered using the automatic programming system, the mark need not be entered. The mark is not displayed on the CRT display screen. However, when a file is output, the mark is automatically output at the end of the file. If an attempt is made to execute % when M02 or M03 is not placed at the end of the program, the P/S alarm (No. 5010) is occurred.

Table 12.1(d) Code of a tape end

<table>
<thead>
<tr>
<th>Name</th>
<th>ISO code</th>
<th>EIA code</th>
<th>Notation in this manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tape end</td>
<td>%</td>
<td>ER</td>
<td>%</td>
</tr>
</tbody>
</table>
This section describes elements of a program section. See Section II–12.1 for program components other than program sections.

Program number

A program number consisting of address O followed by a four-digit number is assigned to each program at the beginning registered in memory to identify the program. When the 8-digit program number option is used, however, specify eight digits for the program number (see Section II.12.4). In ISO code, the colon (:) can be used instead of O. When no program number is specified at the start of a program, the sequence number (N...) at the start of the program is regarded as its program number. If a five-digit sequence number is used, the lower four digits are registered as a program number. If the lower four digits are all 0, the program number registered immediately before added to 1 is registered as a program number. Note, however, that N0 cannot be used for a program number. If there is no program number or sequence number at the start of a program, a program number must be specified using the MDI panel when the program is stored in memory (See Section 8.4 or 10.1 in Part III.).

NOTE

Program numbers 8000 to 9999 may be used by machine tool builders, and the user may not be able to use these numbers.
A program consists of several commands. One command unit is called a block. One block is separated from another with an EOB of end of block code.

Table 12.2(a) EOB code

<table>
<thead>
<tr>
<th>Name</th>
<th>ISO code</th>
<th>EIA code</th>
<th>Notation in this manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>End of block (EOB)</td>
<td>LF</td>
<td>CR</td>
<td>;</td>
</tr>
</tbody>
</table>

At the head of a block, a sequence number consisting of address N followed by a number not longer than five digits (1 to 99999) can be placed. Sequence numbers can be specified in a random order, and any numbers can be skipped. Sequence numbers may be specified for all blocks or only for desired blocks of the program. In general, however, it is convenient to assign sequence numbers in ascending order in phase with the machining steps (for example, when a new tool is used by tool replacement, and machining proceeds to a new surface with table indexing.)

```
N300 X200.0 Z300.0 ; A sequence number is underlined.
```

Fig. 12.2(b) Sequence number and block (example)

NOTE

- N0 must not be used for the reason of file compatibility with other CNC systems.
- Program number 0 cannot be used. So 0 must not be used for a sequence number regarded as a program number.

TV check (Vertical parity check along tape)

A parity check is made for a block on input tape vertically. If the number of characters in one block (starting with the code immediately after an EOB and ending with the next EOB) is odd, an P/S alarm (No.002) is output. No TV check is made only for those parts that are skipped by the label skip function. Bit 1 (CTV) of parameter No. 0100 can be used to specify whether the characters constituting comments, enclosed in "(" and ")", are counted when obtaining the number of characters for TV check. The TV check function can be enabled or disabled by setting on the MDI unit (See subsec. 11.4.7 in Part III.).
A block consists of one or more words. A word consists of an address followed by a number some digits long. (The plus sign (+) or minus sign (−) may be prefixed to a number.)

\[\text{Word} = \text{Address} + \text{number} \] (Example : \(X - 1000\))

For an address, one of the letters (A to Z) is used; an address defines the meaning of a number that follows the address. Table 12.2 (b) indicates the usable addresses and their meanings.

The same address may have different meanings, depending on the preparatory function specification.

Table 12.2(b) Major functions and addresses

<table>
<thead>
<tr>
<th>Function</th>
<th>Address</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program number</td>
<td>O (^{(1)})</td>
<td>Program number</td>
</tr>
<tr>
<td>Sequence number</td>
<td>N</td>
<td>Sequence number</td>
</tr>
<tr>
<td>Preparatory function</td>
<td>G</td>
<td>Specifies a motion mode (linear, arc, etc.)</td>
</tr>
<tr>
<td>Dimension word</td>
<td>X, Y, Z, U, V, W, A, B, C</td>
<td>Coordinate axis move command</td>
</tr>
<tr>
<td></td>
<td>I, J, K</td>
<td>Coordinate of the arc center</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>Arc radius</td>
</tr>
<tr>
<td>Feed function</td>
<td>F</td>
<td>Rate of feed per minute, Rate of feed per revolution</td>
</tr>
<tr>
<td>Spindle speed function</td>
<td>S</td>
<td>Spindle speed</td>
</tr>
<tr>
<td>Tool function</td>
<td>T</td>
<td>Tool number</td>
</tr>
<tr>
<td>Auxiliary function</td>
<td>M</td>
<td>On/off control on the machine tool</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>Table indexing, etc.</td>
</tr>
<tr>
<td>Dwell</td>
<td>P, X, U</td>
<td>Dwell time</td>
</tr>
<tr>
<td>Program number</td>
<td>P</td>
<td>Subprogram number</td>
</tr>
<tr>
<td>designation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of repetitions</td>
<td>P</td>
<td>Number of subprogram repetitions</td>
</tr>
<tr>
<td>Parameter</td>
<td>P, Q</td>
<td>Canned cycle parameter</td>
</tr>
</tbody>
</table>

NOTE

In ISO code, the colon (:) can also be used as the address of a program number.

Fig. 12.2 (c) 1 block (example)
Major addresses and the ranges of values specified for the addresses are shown below. Note that these figures represent limits on the CNC side, which are totally different from limits on the machine tool side. For example, the CNC allows a tool to traverse up to about 100 m (in millimeter input) along the X axis. However, an actual stroke along the X axis may be limited to 2 m for a specific machine tool.

Similarly, the CNC may be able to control a cutting federate of up to 240 m/min, but the machine tool may not allow more than 3 m/min. When developing a program, the user should carefully read the manuals of the machine tool as well as this manual to be familiar with the restrictions on programming.

Table 12.2(c) Major addresses and ranges of command values

<table>
<thead>
<tr>
<th>Function</th>
<th>Address</th>
<th>Input in mm</th>
<th>Input in inch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program number</td>
<td>O (1)</td>
<td>1–9999</td>
<td>1–9999</td>
</tr>
<tr>
<td>Sequence number</td>
<td>N</td>
<td>1–9999</td>
<td>1–9999</td>
</tr>
<tr>
<td>Preparatory function</td>
<td>G</td>
<td>0–99</td>
<td>0–99</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed per minute</td>
<td>F</td>
<td>1 to 24000 at mm/min</td>
<td>0.01 to 9600.00 inch/min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 to 10000 at mm/min</td>
<td>0.01 to 4000.00 inch/min</td>
</tr>
<tr>
<td>Feed per revolution</td>
<td>F</td>
<td>0.01 to 500.00 at mm/rev</td>
<td>0.0001 to 9.9999 at inch/rev</td>
</tr>
<tr>
<td>Spindle speed function</td>
<td>S</td>
<td>0 to 20000</td>
<td>0 to 20000</td>
</tr>
<tr>
<td>Tool function</td>
<td>T</td>
<td>0 to 99999999</td>
<td>0 to 99999999</td>
</tr>
<tr>
<td>Auxiliary function</td>
<td>M</td>
<td>0 to 99999999</td>
<td>0 to 99999999</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>0 to 99999999</td>
<td>0 to 99999999</td>
</tr>
<tr>
<td>Dwell</td>
<td>P, X, U</td>
<td>0 to 99999.999s</td>
<td>0 to 99999.999s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 to 99999.999s</td>
<td>0 to 99999.999s</td>
</tr>
<tr>
<td>Designation of a program number</td>
<td>P</td>
<td>1 to 9999</td>
<td>1 to 9999</td>
</tr>
<tr>
<td>Number of repetitions</td>
<td>P</td>
<td>1 to 999</td>
<td>1 to 999</td>
</tr>
</tbody>
</table>

NOTE

In ISO code, the colon (:) can also be used as the address of a program number.
When a slash followed by a number (/n (n=1 to 9)) is specified at the head of a block, and optional block skip switch n on the machine operator panel is set to on, the information contained in the block for which /n corresponding to switch number n is specified is ignored in tape operation or memory operation.

When optional block skip switch n is set to off, the information contained in the block for which /n is specified is valid. This means that the operator can determine whether to skip the block containing /n.

Number 1 for /1 can be omitted. However, when two or more optional block skip switches are used for one block, number 1 for /1 cannot be omitted.

Example

(Incorrect) (Correct)

```
//3 G00X10.0; /1/3 G00X10.0;
```

This function is ignored when programs are loaded into memory. Blocks containing /n are also stored in memory, regardless of how the optional block skip switch is set.

Programs held in memory can be output, regardless of how the optional block skip switches are set.

Optional block skip is effective even during sequence number search operation.

Depending on the machine tool, all optional block skip switches (1 to 9) may not be usable. Refer to manuals of the machine tool builder to find which switches are usable.

WARNING

1. **Position of a slash**
 A slash (/) must be specified at the head of a block. If a slash is placed elsewhere, the information from the slash to immediately before the EOB code is ignored.

2. **Disabling an optional block skip switch**
 Optional block skip operation is processed when blocks are read from memory or tape into a buffer. Even if a switch is set to on after blocks are read into a buffer, the blocks already read are not ignored.

NOTE

TV and TH check

When an optional block skip switch is on, TH and TV checks are made for the skipped portions in the same way as when the optional block skip switch is off.
The end of a program is indicated by punching one of the following codes at the end of the program:

Table 12.2(d) Code of a program end

<table>
<thead>
<tr>
<th>Code</th>
<th>Meaning usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>M02</td>
<td>For main program</td>
</tr>
<tr>
<td>M30</td>
<td></td>
</tr>
<tr>
<td>M99</td>
<td>For subprogram</td>
</tr>
</tbody>
</table>

If one of the program end codes is executed in program execution, the CNC terminates the execution of the program, and the reset state is set. When the subprogram end code is executed, control returns to the program that called the subprogram.

WARNING

A block containing an optional block skip code such as /M02 ; /M30 ; or /M99 ; is not regarded as the end of a program, if the optional block skip switch on the machine operator’s panel is set to on.

(See item “Optional block skip”.)
12.3 SUBPROGRAM (M98, M99)

If a program contains a fixed sequence or frequently repeated pattern, such a sequence or pattern can be stored as a subprogram in memory to simplify the program.

A subprogram can be called from the main program.
A called subprogram can also call another subprogram.

Format

- Subprogram configuration

<table>
<thead>
<tr>
<th>One subprogram</th>
<th>Subprogram number</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Subprogram number (or the colon :) optionally in the case of ISO)</td>
</tr>
<tr>
<td>;</td>
<td></td>
</tr>
<tr>
<td>;</td>
<td></td>
</tr>
<tr>
<td>M99 ;</td>
<td>Program end</td>
</tr>
</tbody>
</table>

M99 need not constitute a separate block as indicated below.
Example) X100.0 Y100.0 M99 ;

- Subprogram call (M98)

<table>
<thead>
<tr>
<th>M98</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>;</td>
<td></td>
</tr>
</tbody>
</table>

Number of times the subprogram is called repeatedly

When no repetition data is specified, the subprogram is called just once.

Explanations

When the main program calls a subprogram, it is regarded as a one–level subprogram call. Thus, subprogram calls can be nested up to four levels as shown below.

<table>
<thead>
<tr>
<th>Main program</th>
<th>Subprogram (One–level nesting)</th>
<th>Subprogram (Two–level nesting)</th>
<th>Subprogram (Three–level nesting)</th>
<th>Subprogram (Four–level nesting)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O0001 ;</td>
<td>M98P1000 ;</td>
<td>M98P2000 ;</td>
<td>M98P3000 ;</td>
<td>M98P4000 ;</td>
</tr>
<tr>
<td>;</td>
<td>M30 ;</td>
<td>M99 ;</td>
<td>M99 ;</td>
<td>M99 ;</td>
</tr>
</tbody>
</table>

A single call command can repeatedly call a subprogram up to 9999 times.
For compatibility with automatic programming systems, in the first block, Nxxxx can be used instead of a subprogram number that follows O (or :). A sequence number after N is registered as a subprogram number.

Reference item

See Chapter 10 in Part III for the method of registering a subprogram.
NOTE
1 The M98 and M99 signals are not output to the machine tool.
2 If the subprogram number specified by address P cannot be found, an alarm (No. 078) is output.

Examples

☆ M98 P51002 ;
This command specifies “Call the subprogram (number 1002) five times in succession.” A subprogram call command (M98P_) can be specified in the same block as a move command.

☆ X1000.0 M98 P1200 ;
This example calls the subprogram (number 1200) after an X movement.

☆ Execution sequence of subprograms called from a main program

Main program
N0010 ;
N0020 ;
N0030 M98 P21010 ;
N0040 ;
N0050 M98 P1010 ;
N0060 ;

Subprogram
O1010 ;
N1020 ;
N1030 ;
N1040 ;
N1050 ;
N1060 M99 ;

A subprogram can call another subprogram in the same way as a main program calls a subprogram.

Special Usage

• Specifying the sequence number for the return destination in the main program

If P is used to specify a sequence number when a subprogram is terminated, control does not return to the block after the calling block, but returns to the block with the sequence number specified by P. Note, however, that P is ignored if the main program is operating in a mode other than memory operation mode.
This method consumes a much longer time than the normal return method to return to the main program.
Using M99 in the main program

If M99 is executed in a main program, control returns to the start of the main program. For example, M99 can be executed by placing /M99 ; at an appropriate location of the main program and setting the optional block skip function to off when executing the main program. When M99 is executed, control returns to the start of the main program, then execution is repeated starting at the head of the main program. Execution is repeated while the optional block skip function is set to off. If the optional block skip function is set to on, the /M99 ; block is skipped; control is passed to the next block for continued execution. If/M99Pn ; is specified, control returns not to the start of the main program, but to sequence number n. In this case, a longer time is required to return to sequence number n.

```
N0010 ...
N0020 ...
N0030 ...
N0040 ...
N0050 ...
N0060 M99 P0030 ;
N0070 ...
N0080 M02 ;
```

Using a subprogram only

A subprogram can be executed just like a main program by searching for the start of the subprogram with the MDI. (See Section 9.4 in Part III for information about search operation.) In this case, if a block containing M99 is executed, control returns to the start of the subprogram for repeated execution. If a block containing M99Pn is executed, control returns to the block with sequence number n in the subprogram for repeated execution. To terminate this program, a block containing /M02 ; or /M30 ; must be placed at an appropriate location, and the optional block switch must be set to off; this switch is to be set to on first.

```
N1010 ...
N1020 ...
N1030 ...
N1040 M02 ;
N1050 M99 P1020 ;
```

13 FUNCTIONS TO SIMPLIFY PROGRAMMING

General

This chapter explains the following items:

13.1 CANNED CYCLE (G90, G92, G94)
13.2 MULTIPLE REPETITIVE CYCLE (G70 – G76)
13.3 CANNED CYCLE FOR DRILLING (G80 – G89)
13.4 CHAMFERING AND CORNER R
13.5 MIRROR IMAGE FOR DOUBLE TURRET (G68, G69)
13.6 DIRECT DRAWING DIMENSIONS PROGRAMMING
13.7 RIGID TAPPING

NOTE

Explanatory diagrams in this chapter uses diameter programming in X axis.
In radius programming, changes U/2 with U and X/2 with X.
There are three canned cycles: the outer diameter/internal diameter cutting canned cycle (G90), the thread cutting canned cycle (G92), and the end face turning canned cycle (G94).

13.1 CANNED CYCLE (G90, G92, G94)

- **Straight cutting cycle**

![Fig. 13.1.1(a) Straight cutting cycle](image)

In incremental programming, the sign of the numbers following address U and W depends on the direction of paths 1 and 2. In the cycle of 14.11 (a), the signs of U and W are negative. In single block mode, operations 1, 2, 3 and 4 are performed by pressing the cycle start button once.
13. FUNCTIONS TO SIMPLIFY PROGRAMMING

• Taper cutting cycle

G90X(U) Z(W) R__ F__ ;

X axis

Rapid traverse
F...Specified by F code

Fig. 13.1.1(b) Taper cutting cycle

• Signs of numbers specified in the taper cutting cycle

In incremental programming, the relationship between the signs of the numbers following address U, W, and R, and the tool paths are as follows:

<table>
<thead>
<tr>
<th>1. U < 0, W < 0, R < 0</th>
<th>2. U > 0, W < 0, R > 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. U < 0, W < 0, R > 0 at</th>
<th>4. U > 0, W < 0, R < 0 at</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
13.1.2 Thread Cutting Cycle (G92)

G92X(U) Z(W) F ; Lead (L) is specified.

Fig. 13.1.2(a) Straight thread cutting

In incremental programming, the sign of numbers following addresses U and W depends on the direction of paths 1 and 2. That is, if the direction of path 1 is the negative along the X axis, the value of U is negative.

The range of thread leads, limitation of spindle speed, etc. are the same as in G32 (thread cutting). Thread chamfering can be performed in this thread cutting cycle. A signal from the machine tool, initiates thread chamfering. The chamfering distance is specified in a range from 0.1L to 12.7L in 0.1L increments by parameter (No. 5130). (In the above expression, L is the thread lead.)

In the single block mode, operations 1, 2, 3, and 4 are performed by pressing cycle start button once.
WARNING

Notes on this thread cutting are the same as in thread cutting in G32. However, a stop by feed hold is as follows;
Stop after completion of path 3 of thread cutting cycle.

CAUTION

The tool retreats while chamfering and returns to the start point on the X axis then the Z axis, as soon as the feed hold status is entered during thread cutting (motion 2) when the “Thread Cutting Cycle retract” option is used.

- Ordinary cycle
- Motion at feed hold

Feed hold is effected here.

Another feed hold cannot be made during retreat. The chamfered amount is the same as that at the end point.
13. FUNCTIONS TO SIMPLIFY
PROGRAMMING

- Taper thread cutting cycle

G92X(U) Z(W) R__ F__; Lead (L) is specified.

X axis

Z

W

U/2

4(R)

3(R)

2(F)

1(R)

(R) 0Rapid traverse (F) 0Specified by F code

Z axis

X/2

(L) 0Lead (L) is specified.

(The chamfered angle in the left figure is 45 degrees or less because of the delay in the servo system.

Detailed chamfered thread

Approx. 45°

r

Fig. 13.1.2 (b) Taper thread cutting cycle
13.1.3 End Face Turning Cycle (G94)

- Face cutting cycle

In incremental programming, the sign of numbers following addresses U and W depends on the direction of paths 1 and 2. That is, if the direction of the path is in the negative direction of the Z axis, the value of W is negative.

In single block mode, operations 1, 2, 3, and 4 are performed by pressing the cycle start button once.
• Taper face cutting cycle

In incremental programming, the relationship between the signs of the numbers following address U, W, and R, and the tool paths are as follows:

<table>
<thead>
<tr>
<th>Case</th>
<th>U, W, R Conditions</th>
<th>Tool Path Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>U < 0, W < 0, R < 0</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>U > 0, W < 0, R < 0</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>U < 0, W < 0, R > 0 at</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>U > 0, W < 0, R < 0 at</td>
<td></td>
</tr>
</tbody>
</table>

In each case, the tool path follows the sign conventions specified in the taper cutting cycle.
NOTE

1 Since data values of X (U), Z (W) and R during canned cycle are modal, if X (U), Z (W), or R is not newly commanded, the previously specified data is effective. Thus, when the Z axis movement amount does not vary as in the example below, a canned cycle can be repeated only by specifying the movement commands for the X–axis.

However, these data are cleared, if a one–shot G code expect for G04 (dwell) or a G code in the group 01 except for G90, G92, G94 is commanded.

(Example)

The cycle in the above figure is executed by the following program.

N030	G90 U–8.0 W–66.0 F0.4 ;
N031	U–16.0 ;
N032	U–24.0 ;
N033	U–32.0 ;

2 The following two applications can be performed.

(1) If an EOB or zero movement commands are specified for the block following that specified with a canned cycle, the same canned cycle is repeated.

(2) If the M, S, T function is commanded during the canned cycle mode, both the canned cycle and M, S, or T function can be performed simultaneously. If this is inconvenient, cancel the canned cycle once as in the program examples below (specify G00 or G01) and execute the M, S, or T command. After the execution of M, S, or T terminates, command the canned cycle again.

(Example)

N003	T0101 ;
:	:
:	:
N010	G90 X20.0 Z10.0 F0.2 ;
N011	G00 T0202 ;
N012	G90 X20.5 Z10.0 ;
13.1.4 How to Use Canned Cycles (G90, G92, G94)

- Straight cutting cycle (G90)

An appropriate canned cycle is selected according to the shape of the material and the shape of the product.

- Taper cutting cycle (G90)
13. FUNCTIONS TO SIMPLIFY

- **Face cutting cycle (G94)**

- **Face taper cutting cycle (G94)**
13.2 MULTIPLE REPETITIVE CYCLE (G70 – G76)

13.2.1 Stock Removal in Turning (G71)

- Type I

This option canned cycles to make CNC programming easy. For instance, the data of the finish work shape describes the tool path for rough machining. And also, a canned cycles for the thread cutting is available.

There are two types of stock removals in turning: Type I and II.

If a finished shape of A to A’ to B is given by a program as in the figure below, the specified area is removed by Δd (depth of cut), with finishing allowance Δu/2 and Δw left.

![Diagram](image)

Fig. 13.2.1 (a) Cutting path in stock removal in turning (Type I)
NOTE

1. While both Δd and Δu, are specified by address U, the meanings of them are determined by the presence of addresses P and Q.

2. The cycle machining is performed by G71 command with P and Q specification. F, S, and T functions which are specified in the move command between points A and B are ineffective and those specified in G71 block or the previous block are effective.

When an option of constant surface speed control is selected, G96 or G97 command specified in the move command between points A and B are ineffective, and that specified in G71 block or the previous block is effective.

The following four cutting patterns are considered. All of these cutting cycles are made paralleled to Z axis and the sign of Δu and Δw are as follows:

The tool path between A and A' is specified in the block with sequence number “ns” including G00 or G01, and in this block, a move command in the Z axis cannot be specified. The tool path between A' and B must be steadily increasing or decreasing pattern in both X and Z axis. When the tool path between A and A' is programmed by G00/G01, cutting along AA' is performed in G00/G01 mode respectively.

3. The subprogram cannot be called from the block between sequence number “ns” and “nf”.
Type II

Type II differs from type I in the following: The profile need not show monotone increase or monotone decrease along the X axis, and it may have up to 10 concaves (pockets).

![Fig. 13.2.1 (b) Number of pockets in stock removal in turning (Type II)](image)

Note that, however, the profile must have monotone decrease or increase along the Z axis. The following profile cannot be machined:

![Fig. 13.2.1 (c) Figure which cannot be machined in stock removal in turning (Type II)](image)

The first cut portion need not be vertical; any profile is permitted if monotone change is shown along the Z axis.

![Fig. 13.2.1 (d) Figure which can be machined (Monotonic change) in stock removal in turning (Type II)](image)

After turning, a clearance is provided by cutting along the workpiece profile.
13. FUNCTIONS TO SIMPLIFY PROGRAMMING

The clearance e (specified in R) to be provided after cutting can also be set in parameter No. 5133.

A sample cutting path is given below:

```
(Example)

G71 V10.0 R5.0 ;
G71 P100 Q200 ....;
N100X (U)___;
:
N200 ........;
```

- **Distinction between type I and type II**

When only one axis is specified in the first block of a repetitive portion
- Type I

When two axes are specified in the first block of a repetitive portion
- Type II

When the first block does not include Z motion and type II is to be used, $W0$ must be specified.

(Example)

```
TYPEI       TYPEII
G71 V10.0 R5.0 ;   G71 V10.0 R5.0 ;
G71 P100 Q200 ....;  G71 P100 Q200 ....;
N100X (U)___:   N100X (U)___ Z(W)___;
:                :
:                :
N200 .........;   N200 .........;
```
13.2.2
Stock Removal in Facing (G72)

As shown in the figure below, this cycle is the same as G71 except that cutting is made by an operation parallel to X axis.

\[
\begin{align*}
G72 \ W(\Delta d) \ R(e) ; \\
G72 \ P(\mathfrak{n}s) \ Q(\mathfrak{n}f) \ U(\Delta u) \ W(\Delta w) \ F(f) \ S(s) \ T(t) ;
\end{align*}
\]

The meanings of Δd, e, $\mathfrak{n}s$, $\mathfrak{n}f$, Δu, Δw, f, s, and t are the same as those in G71.

- Signs of specified numbers

The following four cutting patterns are considered. All of these cutting cycles are made parallel to X axis and the sign of Δu and Δw are as follows:

\[
\begin{align*}
U(-) \ldots W(-) \ldots \\
U(+) \ldots W(+) \ldots
\end{align*}
\]

Both linear and circular interpolation are possible.

The tool path between A and A’ is specified in the block with sequence number “ns” including G00 or G01, and in this block, a move command in the X axis cannot be specified. The tool path between A’ and B must be steadily increasing and decreasing pattern in both X and Z axes. Whether the cutting along AA’ is G00 or G01 mode is determined by the command between A and A’, as described in item 13.2.1.
This function permits cutting a fixed pattern repeatedly, with a pattern being displaced bit by bit. By this cutting cycle, it is possible to efficiently cut work whose rough shape has already been made by a rough machining, forging or casting method, etc.

\[\Delta w \]
\[\Delta u/2 \]
\[\Delta i+\Delta u/2 \]
\[\Delta k+\Delta w \]
\[\Delta k+\Delta w \]

\[A \rightarrow A' \rightarrow B \]

G73 U (\(\Delta i \)) W (\(\Delta k \)) R (\(d \)) ;

G73 P (ns) Q (nf) U (\(\Delta u \)) W (\(\Delta w \)) F (f) S (s) T (t) ;

\[N (ns) \ldots F \]
\[N (nf) \ldots T \]

The move command between A and B is specified in the blocks from sequence number ns to nf.

\[\Delta i \] : Distance and direction of relief in the X axis direction (Radius designation).
This designation is modal and is not changed until the other value is designated.
Also this value can be specified by the parameter No. 5135, and the parameter is changed by the program command.

\[\Delta k \] : Distance and direction of relief in the Z axis direction.
This designation is modal and is not changed until the other value is designated.
Also this value can be specified by the parameter No. 5136, and the parameter is changed by the program command.

\[d \] : The number of division
This value is the same as the repetitive count for rough cutting. This designation is modal and is not changed until the other value is designated.
Also this value can be specified by the parameter No. 5137, and the parameter is changed by the program command.

\[ns \] : Sequence number of the first block for the program of finishing shape.
\[nf \] : Sequence number of the last block for the program of finishing shape.

\[\Delta u \] : Distance and direction of finishing allowance in X direction (diameter/radius designation)

\[\Delta w \] : Distance and direction of finishing allowance in Z direction

f,s,t : Any F, S, and T function contained in the blocks between sequence number “ns” and “nf” are ignored, and the F, S, and T functions in this G73 block are effective.

Fig. 13.2.3 Cutting path in pattern repeating
13. FUNCTIONS TO SIMPLIFY

13.2.4 Finishing Cycle (G70)

After rough cutting by G71, G72 or G73, the following command permits finishing.

Format

```
G70 P(ns) Q(nf) ;
```

- **P(ns)**: Sequence number of the first block for the program of finishing shape.
- **Q(nf)**: Sequence number of the last block for the program of finishing shape.

NOTE

1. F, S, and T functions specified in the block G71, G72, G73 are not effective but those specified between sequence numbers “ns” and “nf” are effective in G70.
2. When the cycle machining by G70 is terminated, the tool is returned to the start point and the next block is read.
3. In blocks between “ns” and “nf” referred in G70 through G73, the subprogram cannot be called.
Examples

Stock Removal In Facing (G72)

(Diameter designation, metric input)

<table>
<thead>
<tr>
<th>Line</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N010</td>
<td>G50</td>
<td>X220.0 Z190.0</td>
</tr>
<tr>
<td>N011</td>
<td>G00</td>
<td>X176.0 Z132.0</td>
</tr>
<tr>
<td>N012</td>
<td>G72</td>
<td>W7.0 R1.0</td>
</tr>
<tr>
<td>N013</td>
<td>G72</td>
<td>P014 Q019 U4.0 W2.0 F0.3 S550</td>
</tr>
<tr>
<td>N014</td>
<td>G00</td>
<td>Z58.0 S700</td>
</tr>
<tr>
<td>N015</td>
<td>G01</td>
<td>X120.0 W12.0 F0.15</td>
</tr>
<tr>
<td>N016</td>
<td>W10.0</td>
<td></td>
</tr>
<tr>
<td>N017</td>
<td>X80.0 W10.0</td>
<td></td>
</tr>
<tr>
<td>N018</td>
<td>W20.0</td>
<td></td>
</tr>
<tr>
<td>N019</td>
<td>X36.0 W22.0</td>
<td></td>
</tr>
<tr>
<td>N020</td>
<td>G70</td>
<td>P014 Q019</td>
</tr>
</tbody>
</table>
(Diameter designation, metric input)
N010 G50 X260.0 Z220.0 ;
N011 G00 X220.0 Z160.0 ;
N012 G73 U14.0 W14.0 R3 ;
N013 G73 P014 Q019 U4.0 W2.0 F0.3 S0180 ;
N014 G00 X80.0 W–40.0 ;
N015 G01 W–20.0 F0.15 S0600 ;
N017 W–20.0 S0400 ;
N018 G02 X160.0 W–20.0 R20.0 ;
N019 G01 X180.0 W–10.0 S0280 ;
N020 G70 P014 Q019 ;
13.2.5 End Face Peck Drilling Cycle (G74)

The following program generates the cutting path shown in Fig. 13.2.5. Chip breaking is possible in this cycle as shown below. If X (U) and Pare omitted, operation only in the Z axis results, to be used for drilling.

The designation is modal and is not changed until the other value is designated. Also this value can be specified by the parameter No. 5139, and the parameter is changed by the program command.

- **X**: X component of point B
- **U**: Incremental amount from A to B
- **Z**: Z component of point C
- **W**: Increment amount from A to C
- **Δi**: Movement amount in X direction (without sign)
- **Δk**: Depth of cut in Z direction (without sign)
- **Δd**: Relief amount of the tool at the cutting bottom. The sign of Δd is always plus (+). However, if address X (U) and Δi are omitted, the relief direction can be specified by the desired sign.
- **f**: Feed rate

NOTE
1. While both e and Δd are specified by address R, the meanings of them are determined by the present of address X (U). When X(U) is specified, Δi is used.
2. The cycle machining is performed by G74 command with X (U) specification.

Fig. 13.2.5 Cutting path in end face peek drilling cycle
The following program generates the cutting path shown in Fig. 13.2.6. This is equivalent to G74 except that X is replaced by Z. Chip breaking is possible in this cycle, and grooving in X axis and peck drilling in X axis (in this case, Z, W, and Q are omitted) are possible.

The program is:

```
G75R (e);
G75X(U) Z(W) P(Δi) Q(Δk) R(Δd) F(f);
```

Both G74 and G75 are used for grooving and drilling, and permit the tool to relief automatically. Four symmetrical patterns are considered, respectively.
13.2.7 Multiple Thread Cutting Cycle (G76)

The thread cutting cycle as shown in Fig. 13.2.7 is programmed by the G76 command.

Fig. 13.2.7 Cutting path in multiple thread cutting cycle
G76P (m) (r) (a) Q (∆d min) R(d);
G76X (u) _ Z(W) _ R(i) P(k) Q(∆d) F(L) ;

m : Repetitive count in finishing (1 to 99)
 This designation is modal and is not changed until the other value is
designated. Also this value can be specified by the parameter No.
5142, and the parameter is changed by the program command.

r : Chamfering amount
 When the thread lead is expressed by L, the value of L can be set from
 0.0L to 9.9L in 0.1L increment (2-digit number from 00 to 90).
 This designation is modal and is not changed until the other value is
designated. Also this value can be specified by the parameter No.
5130, and the parameter is changed by the program command.

a : Angle of tool tip
 One of six kinds of angle, 80°, 60°, 55°, 30°, 29°, and 0°, can be selected,
 and specified by 2-digit number.
 This designation is modal and is not changed until the other value is
designated. Also this value can be specified by the parameter No.
5143, and the parameter is changed by the program command.

(Example)
When m=2, r=1.2L, a=60°, specify as shown below (L is lead of thread).

m, r, and a are specified by address P at the same time.

Δdmin : Minimum cutting depth (specified by the radius value)
 When the cutting depth of one cycle operation (∆d − ∆d − 1) becomes
 smaller than this limit, the cutting depth is clamped at this value. This
designation is modal and is not changed until the other value is
designated. Also this value can be specified by parameter No.
5140, and the parameter is changed by the program command.

d : Finishing allowance
 This designation is modal and is not changed until the other value
 is designated. Also this value can be specified by parameter No.
5141, and the parameter is changed by the program command.

i : Difference of thread radius If i = 0, ordinary straight thread cutting
can be made.

k : Height of thread
 This value is specified by the radius value.

Δd : Depth of cut in 1st cut (radius value)
L : Lead of thread (same as G32).
• **Thread cutting cycle retract**

When feed hold is applied during threading in the multiple thread cutting cycle (G76), the tool quickly retracts in the same way as in chamfering performed at the end of the thread cutting cycle. The tool goes back to the start point of the cycle. When cycle start is triggered, the multiple thread cutting cycle resumes.

Without this retraction function, when feed hold is applied during threading, the tool goes back to the start point of the cycle after threading is completed.

See notes in 13.1.2.

NOTE

1. The meanings of the data specified by address P, Q, and R determined by the presence of X (U) and X (W).

2. The cycle machining is performed by G76 command with X (U) and Z (W) specification.

 By using this cycle, one edge cutting is performed and the load on the tool tip is reduced.

 Making the cutting depth Δd for the first path, and Δdn for the nth path, cutting amount per one cycle is held constant.

 Four symmetrical patterns are considered corresponding to the sign of each address.

 The internal thread cutting is available. In the above figure, the feed rate between C and D is specified by address F, and in the other path, at rapid traverse. The sign of incremental dimensions for the above figure is as follows:

 U, W : minus (determined by the direction of the tool path AC and CD.)

 R : minus (determined by the direction of the tool path AC.)

 P : plus (always)

 Q : plus (always)

3. Notes on thread cutting are the same as those on G32 thread cutting and G92 thread cutting cycle.

4. The designation of chamfering is also effective for G92 thread cutting cycle.

5. The tool returns to the cycle start point at that time (cutting depth Δdn) as soon as the feed hold status is entered during threading when the “Thread Cutting Cycle retract” option is used.
Examples

Multiple repetitive cycle (G76)

- **Staggered thread cutting**

 Specifying P2 can perform staggered thread cutting with a constant depth of cut.

 Example: G76 X60640 Z25000 K3680 D1800 F6.0 A60 P2;

 For staggered thread cutting, always use the FS15 tape format (see Section 17.5).

 When command P instructing a cutting method is not specified or a command other than P2 is specified, one–tool cutting is performed by a constant amount.

 If the depth of cut in one cycle is less than \(d_{\text{min}} \) (specified in parameter No. 5140), the depth of cut is clamped at \(\Delta d_{\text{min}} \).

\[\text{NOTE}\]

Multiple repetitive cycle II is required.
13. FUNCTIONS TO SIMPLIFY PROGRAMMING

Staggered thread cutting with a constant depth of cut

- Tool nose
- \(H_1 \)
- \(H_2 \)
- \(H_3 \)
- \(H_4 \)
- \(H_5 \)
- \(H_7 \)
- \(H_8 \)
- \(H_9 \)
- \(\alpha \) (Finishing allowance)
13.2.8 Notes on Multiple Repetitive Cycle (G70 – G76)

1. In the blocks where the multiple repetitive cycle are commanded, the addresses P, Q, X, Z, U, W, and R should be specified correctly for each block.

2. In the block which is specified by address P of G71, G72 or G73, G00 or G01 group should be commanded. If it is not commanded, P/S alarm No.65 is generated.

3. In MDI mode, G70, G71, G72, or G73 cannot be commanded. If it is commanded, P/S alarm No. 67 is generated. G74, G75, and G76 can be commanded in MDI mode.

4. In the blocks in which G70, G71, G72, or G73 are commanded and between the sequence number specified by P and Q, M98 (subprogram call) and M99 (subprogram end) cannot be commanded.

5. In the blocks between the sequence number specified by P and Q, the following commands cannot be specified.
 - One shot G code except for G04 (dwell)
 - 01 group G code except for G00, G01, G02, and G03
 - 06 group G code
 - M98 / M99

6. While a multiple repetitive cycle (G70AG76) is being executed, it is possible to stop the cycle and to perform manual operation. But, when the cycle operation is restarted, the tool should be returned to the position where the cycle operation is stopped.
 If the cycle operation is restarted without returning to the stop position, the movement in manual operation is added to the absolute value, and the tool path is shifted by the movement amount in manual operation.

7. When G70, G71, G72, or G73 is executed, the sequence number specified by address P and Q should not be specified twice or more in the same program.

8. The blocks between the sequence number specified by P and Q on the multiple repetitive cycle must not be programmed by using “Direct Drawing Dimensions Programming” or “Chamfering and Corner R”.

9. G74, G75, and G76 also do not support the input of a decimal point for P or Q. The least input increments are used as the units in which the amount of travel and depth of cut are specified.

10. When #1 = 2500 is executed using a custom macro, 2500.000 is assigned to #1. In such a case, P#1 is equivalent to P2500.

11. Tool nose radius compensation cannot be applied to G71, G72, G73, G74, G75, G76, or G78.

12. The multiple repetitive cycle cannot be executing during DNC operation.

13. Interruption type custom macro cannot be executed during executing the multiple repetitive cycle.

14. The multiple repetitive cycle cannot be executing during Advanced Preview Control mode.
13.3 CANNED CYCLE FOR DRILLING (G80 – G89)

The canned cycle for drilling simplifies the program normally by directing the machining operation commanded with a few blocks, using one block including G code. Following is the canned cycle table.

<table>
<thead>
<tr>
<th>G code</th>
<th>Drilling axis</th>
<th>Hole machining operation (– direction)</th>
<th>Operation in the bottom hole position</th>
<th>Retraction operation (+ direction)</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>G80</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>Cancel</td>
</tr>
<tr>
<td>G83</td>
<td>Z axis</td>
<td>Cutting feed / intermittent</td>
<td>Dwell</td>
<td>Rapid traverse</td>
<td>Front drilling cycle</td>
</tr>
<tr>
<td>G84</td>
<td>Z axis</td>
<td>Cutting feed</td>
<td>Dwell→spindle CCW</td>
<td>Cutting feed</td>
<td>Front tapping cycle</td>
</tr>
<tr>
<td>G85</td>
<td>Z axis</td>
<td>Cutting feed</td>
<td>___</td>
<td>Cutting feed</td>
<td>Front boring cycle</td>
</tr>
<tr>
<td>G87</td>
<td>X axis</td>
<td>Cutting feed / intermittent</td>
<td>Dwell</td>
<td>Rapid traverse</td>
<td>Side drilling cycle</td>
</tr>
<tr>
<td>G88</td>
<td>X axis</td>
<td>Cutting feed</td>
<td>Dwell→spindle CCW</td>
<td>Cutting feed</td>
<td>Side tapping cycle</td>
</tr>
<tr>
<td>G89</td>
<td>X axis</td>
<td>Cutting feed</td>
<td>Dwell</td>
<td>Cutting feed</td>
<td>Side boring cycle</td>
</tr>
</tbody>
</table>

In general, the drilling cycle consists of the following six operation sequences.

Operation 1 Positioning of X (Z) and C axis
Operation 2 Rapid traverse up to point R level
Operation 3 Hole machining
Operation 4 Operation at the bottom of a hole
Operation 5 Retraction to point R level
Operation 6 Rapid traverse up to the initial point

![Fig. 13.3 Drilling cycle operation sequence](image-url)
Explanations

- **Positioning axis and drilling axis**

A drilling G code specifies positioning axes and a drilling axis as shown below. The C-axis and X– or Z–axis are used as positioning axes. The X– or Z–axis, which is not used as a positioning axis, is used as a drilling axis.

Although canned cycles include tapping and boring cycles as well as drilling cycles, in this chapter, only the term drilling will be used to refer to operations implemented with canned cycles.

<table>
<thead>
<tr>
<th>G code</th>
<th>Positioning plane</th>
<th>Drilling axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>G83, G84, G85</td>
<td>X axis, C axis</td>
<td>Z axis</td>
</tr>
<tr>
<td>G87, G88, G89</td>
<td>Z axis, C axis</td>
<td>X axis</td>
</tr>
</tbody>
</table>

G83 and G87, G84 and G88, and G85 and G89 have the same function respectively except for axes specified as positioning axes and a drilling axis.

- **Drilling mode**

G83AG85 / G87A89 are modal G codes and remain in effect until canceled. When in effect, the current state is the drilling mode.

Once drilling data is specified in the drilling mode, the data is retained until modified or canceled.

Specify all necessary drilling data at the beginning of canned cycles; when canned cycles are being performed, specify data modifications only.

- **Return point level G98/G99**

In G code system A, the tool returns to the initial level from the bottom of a hole. In G code system B or C, specifying G98 returns the tool to the initial level from the bottom of a hole and specifying G99 returns the tool to the point–R level from the bottom of a hole.

The following illustrates how the tool moves when G98 or G99 is specified. Generally, G99 is used for the first drilling operation and G98 is used for the last drilling operation.

The initial level does not change even when drilling is performed in the G99 mode.
• Number of repeats

To repeat drilling for equally-spaced holes, specify the number of repeats in K_.
K is effective only within the block where it is specified.
Specify the first hole position in incremental mode.
If it is specified in absolute mode, drilling is repeated at the same position.

| Number of repeats K | The maximum command value = 9999 |

When K0 is specified with parameter K0E (parameter No. 5102 #4) set to 0, drilling is performed once.
When K0 is specified with parameter K0E (parameter No. 5102 #4) set to 1, drilling data is just stored without drilling being performed.

• M code used for C–axis clamp/unclamp

When an M code specified in parameter No. 5110 for C–axis clamp/unclamp is coded in a program, the CNC issues the M code for C–axis clamp after the tool is positioned and before the tool is fed in rapid traverse to the point–R level. The CNC also issues the M code (the M code for C–axis clamp +1) for C–axis unclamp after the tool retracts to the point–R level. The tool dwells for the time specified in parameter No. 5111.

• Cancel

To cancel a canned cycle, use G80 or a group 01 G code.

Group 01 G codes
G00: Positioning (rapid traverse)
G01: Linear interpolation
G02: Circular interpolation (CW)
G03: Circular interpolation (CCW)

• Symbols in figures

Subsequent sections explain the individual canned cycles. Figures in these explanations use the following symbols:
CAUTION
1. In each canned cycle,
 R (distance between the initial level and point R) is always
 handled as a radius.
 Z or X (distance between point R and the bottom of the
 hole) is, however, handled either as a diameter or radius,
 depending on the specification.
2. For the B or C G–code system, G90 or G91 can be used to
 select an incremental or absolute command for hole
 position data (X, C or Z, C), the distance from point R to the
 bottom of the hole (Z or X), and the distance from the initial
 level to the point R level (R).
13.3.1 Front Drilling Cycle (G83) / Side Drilling Cycle (G87)

- High-speed peck drilling cycle (G83, G87) (parameter RTR (No. 5101#2) = 0)

The peck drilling cycle or high-speed peck drilling cycle is used depending on the setting in RTR, bit 2 of parameter No. 5101. If depth of cut for each drilling is not specified, the normal drilling cycle is used.

This cycle performs high-speed peck drilling. The drill repeats the cycle of drilling at the cutting feedrate and retracting the specified retraction distance intermittently to the bottom of a hole. The drill draws cutting chips out of the hole when it retracts.

Format

\[
\begin{align*}
\text{G83} & \text{X(U)}__ \text{C(H)}__ \text{Z(W)}__ \text{R}__ \text{Q}__ \text{P}__ \text{F}__ \text{K}__ \text{M}__; \\
\text{or} & \\
\text{G87} & \text{Z(W)}__ \text{C(H)}__ \text{X(U)}__ \text{R}__ \text{Q}__ \text{P}__ \text{F}__ \text{K}__ \text{M}_\; \\
\end{align*}
\]

- **X** or **Z**: Hole position data
- **C**: The distance from point R to the bottom of the hole
- **R**: The distance from the initial level to point R level
- **Q**: Depth of cut for each cutting feed
- **P**: Dwell time at the bottom of a hole
- **F**: Cutting feedrate
- **K**: Number of repeats (When it is needed)
- **M**: M code for C-axis clamp (When it is needed.)

<table>
<thead>
<tr>
<th>G83 or G87 (G98 mode)</th>
<th>G83 or G87 (G99 mode)</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Diagram 1]</td>
<td>![Diagram 2]</td>
</tr>
</tbody>
</table>

- **Mα**: M code for C-axis clamp
- **M(α+1)**: M code for C-axis unclamp
- **P1**: Dwell specified in the program
- **P2**: Dwell specified in parameter No. 5111
- **d**: Retraction distance specified in parameter No. 5114
- Peck drilling cycle (G83, G87) (parameter No. 5101#2 =1)

Format

<table>
<thead>
<tr>
<th>G83 or G87 (G98 mode)</th>
<th>G83 or G87 (G99 mode)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G83 X(U)_ C(H)_ Z(W)_ R_ Q_ P_ F_ K_ M_ ;</td>
<td>G87 Z(W)_ C(H)_ X(U)_ R_ Q_ P_ F_ K_ M_ ;</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>X_ C_ or Z_ C_ : Hole position data</td>
<td></td>
</tr>
<tr>
<td>Z_ or X_ : The distance from point R to the bottom of the hole</td>
<td></td>
</tr>
<tr>
<td>R_ : The distance from the initial level to point R level</td>
<td></td>
</tr>
<tr>
<td>Q_ : Depth of cut for each cutting feed</td>
<td></td>
</tr>
<tr>
<td>P_ : Dwell time at the bottom of a hole</td>
<td></td>
</tr>
<tr>
<td>F_ : Cutting feedrate</td>
<td></td>
</tr>
<tr>
<td>K_ : Number of repeats (When it is needed.)</td>
<td></td>
</tr>
<tr>
<td>M_ : M code for C–axis clamp (When it is needed.)</td>
<td></td>
</tr>
</tbody>
</table>

Examples

M51 ; Setting C–axis index mode ON
M3 S2000 ; Rotating the drill
G00 X50.0 C0.0 ; Positioning the drill along the X– and C–axes
G83 Z–40.0 R–5.0 Q5000 F5.0 M31 ; Drilling hole 1
C90.0 M31 ; Drilling hole 2
C180.0 M31 ; Drilling hole 3
C270.0 M31 ; Drilling hole 4
G80 M05 ; Canceling the drilling cycle and stopping drill rotation
M50 ; Setting C–axis index mode off

NOTE

If the depth of cut for each cutting feed (Q) is not commanded, normal drilling is performed. (See the description of the drilling cycle.)
If depth of cut is not specified for each drilling, the normal drilling cycle is used. The tool is then retracted from the bottom of the hole in rapid traverse.

Format

G83 X(U)_ C(H)_ Z(W)_ R_ P_ F_ K_ M_;

or

G87 Z(W)_ C(H)_ X(U)_ R_ P_ F_ K_ M_;

- X_ C_ or Z_ C_: Hole position data
- Z_ or X_: The distance from point R to the bottom of the hole
- R_: The distance from the initial level to point R level
- P_: Dwell time at the bottom of a hole
- F_: Cutting feedrate
- K_: Number of repeats (When it is needed.)
- M_: M code for C–axis clamp (When it is needed.)

<table>
<thead>
<tr>
<th>G83 or G87 (G98 mode)</th>
<th>G83 or G87 (G99 mode)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Mα_: M code for C–axis clamp
- M(α+1): M code for C–axis unclamp
- P1_: Dwell specified in the program
- P2_: Dwell specified in parameter No. 5111

Examples

- M51 ; Setting C–axis index mode ON
- M3 S2000 ; Rotating the drill
- G00 X50.0 C0.0 ; Positioning the drill along the X– and C–axes
- G83 Z–40.0 R–5.0 P500 F5.0 M31 ; Drilling hole 1
- C90.0 M31 ; Drilling hole 2
- C180.0 M31 ; Drilling hole 3
- C270.0 M31 ; Drilling hole 4
- G80 M05 ; Canceling the drilling cycle and stopping drill rotation
- M50 ; Setting C–axis index mode off
13.3.2 Front Tapping Cycle (G84) / Side Tapping Cycle (G88)

This cycle performs tapping.
In this tapping cycle, when the bottom of the hole has been reached, the spindle is rotated in the reverse direction.

Format

G84 X(U)_ C(H)_ Z(W)_ R_ P_ F_ K_ M_ ;
or
G88 Z(W)_ C(H)_ X(U)_ R_ P_ F_ K_ M_ ;

X_ C_ or Z_ C_ : Hole position data
Z_ or X_ : The distance from point R to the bottom of the hole
R_ : The distance from the initial level to point R level
P_ : Dwell time at the bottom of a hole
F_ : Cutting feedrate
K_ : Number of repeats (When it is needed.)
M_ : M code for C-axis clamp (when it is needed.)

Explanations

Tapping is performed by rotating the spindle clockwise. When the bottom of the hole has been reached, the spindle is rotated in the reverse direction for retraction. This operation creates threads.
Feedrate overrides are ignored during tapping. A feed hold does not stop the machine until the return operation is completed.
NOTE
Bit 6 (M5T) of parameter No. 5101 specifies whether the spindle stop command (M05) is issued before the direction in which the spindle rotates is specified with M03 or M04. For details, refer to the operator's manual created by the machine tool builder.

Examples

M51 ; Setting C-axis index mode ON
M3 S2000 ; Rotating the drill
G00 X50.0 C0.0 ; Positioning the drill along the X– and C– axes
G83 Z–40.0 R–5.0 P500 F5.0 M31 ; Drilling hole 1
C90.0 M31 ; Drilling hole 2
C180.0 M31 ; Drilling hole 3
C270.0 M31 ; Drilling hole 4
G80 M05 ; Canceling the drilling cycle and stopping drill rotation
M50 ; Setting C-axis index mode off
13.3.3 Front Boring Cycle (G85) / Side Boring Cycle (G89)

Format

<table>
<thead>
<tr>
<th>G85 X(U)_ C(H)_ Z(W)_ R_ P_ F_ K_ M_;</th>
<th>G85 or G89 (G98 mode)</th>
</tr>
</thead>
<tbody>
<tr>
<td>or G89 Z(W)_ C(H)_ X(U)_ R_ P_ F_ K_ M_;</td>
<td>G85 or G89 (G99 mode)</td>
</tr>
</tbody>
</table>

- **X_ C_ or Z_ C_;** Hole position data
- **Z_ or X_;** The distance from point R to the bottom of the hole
- **R_;** The distance from the initial level to point R level
- **P_;** Dwell time at the bottom of a hole
- **F_;** Cutting feedrate
- **K_;** Number of repeats (When it is needed.)
- **M_;** M code for C–axis clamp (When it is needed.)

Explanations

After positioning, rapid traverse is performed to point R. Drilling is performed from point R to point Z. After the tool reaches point Z, it returns to point R at a feedrate twice the cutting feedrate.

Examples

- M51 ; Setting C–axis index mode ON
- M3 S2000 ; Rotating the drill
- G00 X50.0 C0.0 ; Positioning the drill along the X– and C–axes
- G83 Z–40.0 R–5.0 P500 F5.0 M31 ; Drilling hole 1
- C90.0 M31 ; Drilling hole 2
- C180.0 M31 ; Drilling hole 3
- C270.0 M31 ; Drilling hole 4
- G80 M05 ; Canceling the drilling cycle and stopping drill rotation
- M50 ; Setting C–axis index mode off
13.3.4
Canned Cycle for Drilling Cancel (G80)

Format

G80 ;

Explanations

Canned cycle for drilling is canceled to perform normal operation. Point R and point Z are cleared. Other drilling data is also canceled (cleared).

Examples

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M51 ;</td>
<td>Setting C-axis index mode ON</td>
</tr>
<tr>
<td>M3 S2000 ;</td>
<td>Rotating the drill</td>
</tr>
<tr>
<td>G00 X50.0 C0.0 ;</td>
<td>Positioning the drill along the X– and C–axes.</td>
</tr>
<tr>
<td>G83 Z–40.0 R–5.0 P500 F5.0 M31 ;</td>
<td>Drilling hole 1</td>
</tr>
<tr>
<td>C90.0 M31 ;</td>
<td>Drilling hole 2</td>
</tr>
<tr>
<td>C180.0 M31 ;</td>
<td>Drilling hole 3</td>
</tr>
<tr>
<td>C270.0 M31 ;</td>
<td>Drilling hole 4</td>
</tr>
<tr>
<td>G80 M05 ;</td>
<td>Canceling the drilling cycle and stopping drill rotation</td>
</tr>
<tr>
<td>M50 ;</td>
<td>Setting C-axis index mode off</td>
</tr>
</tbody>
</table>
13.3.5 Precautions to be Taken by Operator

- **Reset and emergency stop**
 Even when the controller is stopped by resetting or emergency stop in the course of drilling cycle, the drilling mode and drilling data are saved; with this mind, therefore, restart operation.

- **Single block**
 When drilling cycle is performed with a single block, the operation stops at the end points of operations 1, 2, 6 in Fig. 13.3 (a). Consequently, it follows that operation is started up 3 times to drill one hole. The operation stops at the end points of operations 1, 2 with the feed hold lamp ON. The operation stops in the feed hold conditions at the end point of operation 6 if the repeat remains, and it stops in stop conditions in other cases.

- **Feed hold**
 When “Feed Hold” is applied between operations 3 and 5 by G84/G88, the feed hold lamp lights up immediately if the feed hold is applied again to operation 6.

- **Override**
 During operation with G84 and G88, the feedrate override is 100%.
A chamfer or corner can be inserted between two blocks which intersect at a right angle as follows:

13.4 CHAMFERING AND CORNER R

- **Chamfering**
 - **Z → X**

<table>
<thead>
<tr>
<th>Format</th>
<th>Tool movement</th>
</tr>
</thead>
<tbody>
<tr>
<td>G01 Z(W) _ I (C) ±I ;</td>
<td>![Diagram](Fig. 13.4(a) Chamfering (Z→X))</td>
</tr>
</tbody>
</table>

Specifies movement to point b with an absolute or incremental command in the figure on the right.

- Moves as a→d→c
- (For –X movement, –I)

- **Chamfering**
 - **X → Z**

<table>
<thead>
<tr>
<th>Format</th>
<th>Tool movement</th>
</tr>
</thead>
<tbody>
<tr>
<td>G01 X(U) _ K (C) ±k ;</td>
<td>![Diagram](Fig. 13.4(b) Chamfering (X→Z))</td>
</tr>
</tbody>
</table>

Specifies movement to point b with an absolute or incremental command in the figure on the right.

- Moves as a→d→c
- (For –Z movement, –k)

- **Corner R**
 - **Z → X**

<table>
<thead>
<tr>
<th>Format</th>
<th>Tool movement</th>
</tr>
</thead>
<tbody>
<tr>
<td>G01 Z(W) _ R ±r ;</td>
<td>![Diagram](Fig. 13.4(c) Corner R (Z→X))</td>
</tr>
</tbody>
</table>

Specifies movement to point b with an absolute or incremental command in the figure on the right.

- Moves as a→d→c
- (For –X movement, –r)
13. FUNCTIONS TO SIMPLIFY
PROGRAMMING

- Corner R
 \(X \rightarrow Z \)

<table>
<thead>
<tr>
<th>Format</th>
<th>Tool movement</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{G01 X(U) _ R \pm r ;}</td>
<td>Start point (For (\pm x) movement, (\pm r)) Moves as (a \rightarrow d \rightarrow c)</td>
</tr>
</tbody>
</table>

Fig. 13.4(d) Corner R \((X \rightarrow Z)\)

Explanations

The movement for chamfering or corner R must be a single movement along the X or Z axis in G01 mode. The next block must be a single movement along the X or Z axis perpendicular to the former block. I or K, and R always specify a radius value.

Note that the start point for a command specified in a block following a chamfering or corner-R block is not point c but point b shown in Figs. 13.5 (a) to (d). In incremental programming, specify a distance from point b.

Examples

```plaintext
N1Z270.0R6.0;
N2X860.0K\(-3.0; \)
N3Z0;
```

![Diagram of Corner R (X→Z)]
NOTE
1 The following commands cause an alarm.
 1) One of I, K, or R is commanded when X and Z axes are specified by G01.
 (P/S alarm No. 054)
 2) Move amount of X or Z is less than chamfering value and corner R value in the block where chamfering and corner R are specified. (P/S alarm No. 055)
 3) Next block to the block where chamfering and corner R were specified, has not G01 command. (P/S alarm No. 051, 052)
 4) If more than one of I, K, and R are specified in G01, P/S alarm No. 053 is issued.
2 A single block stops at point c in Fig. 13.4 (a) and (d), not at point d.
3 Chamfering and corner R cannot be applied to a thread cutting block.
4 C can be used instead of I or K as an address for chamfering on the system which does not use C as an axis name. To use C for an address for chamfering, fix parameter CCR No. 3405#4 to 1.
5 If both C and R are specified with G01 in a block, the address specified last is valid.
6 Neither chamfering nor corner–R machining can be specified in direct drawing dimension programming.
13.5 MIRROR IMAGE FOR DOUBLE TURRET (G68, G69)

Format

G68 : Double turret mirror image on
G69 : Mirror image cancel

Explanations

Mirror image can be applied to X–axis with G code. When G68 is designated, the coordinate system is shifted to the mating turret side, and the X–axis sign is reversed from the programmed command to perform symmetrical cutting. To use this function, set the distance between the two turrets to a parameter (No. 1290).

Examples

- Double turret programming

```
X40.0 Z180.0 T0101 ; Position turret A at (1)
G68 ;
Shift the coordinate system by the distance A to B (120mm), and turn mirror image on.
X80.0 Z120.0 T0202 ; Position turret B at (2)
G69 ;
Shift the coordinate system by the distance B to A, and turn mirror image cancel.
X120.0 Z60.0 T0101 ; Position turret A at (3)
```
13.6
DIRECT DRAWING
DIMENSIONS
PROGRAMMING

Angles of straight lines, chamfering value, corner rounding values, and other dimensional values on machining drawings can be programmed by directly inputting these values. In addition, the chamfering and corner rounding can be inserted between straight lines having an optional angle. This programming is only valid in memory operation mode.

Format

<table>
<thead>
<tr>
<th>Commands</th>
<th>Movement of tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X_2_\ldots(Z_2_\ldots), A_\ldots;\quad(X_2, Z_2)$</td>
<td>![Diagram 1]</td>
</tr>
<tr>
<td>$A_1;\quad X_3\ldots Z_3\ldots, A_2\ldots;\quad(X_3, Z_3)$</td>
<td>![Diagram 2]</td>
</tr>
<tr>
<td>$X_2\ldots Z_2\ldots, R_1\ldots;\quad X_3\ldots Z_3\ldots;\quad\text{or}\quad A_1\ldots, R_1\ldots;\quad X_3\ldots Z_3\ldots, A_2\ldots;\quad(X_2, Z_2)$</td>
<td>![Diagram 3]</td>
</tr>
<tr>
<td>$X_2\ldots Z_2\ldots, C_1\ldots;\quad X_3\ldots Z_3\ldots;\quad\text{or}\quad A_1\ldots, C_1\ldots;\quad X_3\ldots Z_3\ldots, A_2\ldots;\quad(X_3, Z_3)$</td>
<td>![Diagram 4]</td>
</tr>
<tr>
<td>Commands</td>
<td>Movement of tool</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
</tr>
</tbody>
</table>
| 5
\[X_2 _Z_2 _ \cdot R_{1 _} \; \]
\[X_3 _Z_3 _ \cdot R_{2 _} \; \]
\[X_4 _Z_4 _; \]
\[A_{1 _} \cdot R_{1 _} ; \]
\[X_3 _Z_3 _ \cdot A_{2 _} \cdot R_{2 _} ; \]
\[X_4 _Z_4 _; \] | ![Diagram for Command 5] |
| 6
\[X_2 _Z_2 _ \cdot C_{1 _} \; \]
\[X_3 _Z_3 _ \cdot C_{2 _} \; \]
\[X_4 _Z_4 _; \] | ![Diagram for Command 6] |
| 7
\[X_2 _Z_2 _ \cdot R_{1 _} \; \]
\[X_3 _Z_3 _ \cdot C_{2 _} \; \]
\[X_4 _Z_4 _; \] | ![Diagram for Command 7] |
| 8
\[X_2 _Z_2 _ \cdot C_{1 _} \; \]
\[X_3 _Z_3 _ \cdot R_{2 _} \; \]
\[X_4 _Z_4 _; \] | ![Diagram for Command 8] |
A program for machining along the curve shown in Fig. 13.6 (a) is as follows:

\[
\begin{align*}
X (x_2) & \quad Z (z_2) , \quad C (c_1) ; \\
X (x_3) & \quad Z (z_3) , \quad R (r_2) ; \\
X (x_4) & \quad Z (z_4) ; \\
0 & \quad A (a_1) , \quad C (c_1) ; \\
X (x_3) & \quad Z (z_3) , \quad A (a_2) , \quad R (r_2) ; \\
X (x_4) & \quad Z (z_4) ; \\
\end{align*}
\]

Fig. 13.6 Machining drawing (example)

For command a straight line, specify one or two out of X, Z, and A. If only one is specified, the straight line must be primarily defined by a command in the next block.

To command the degree of a straight line or the value of chamfering or corner R, command with a comma (,) as follows:

\[
A__ \quad C__ \quad R__
\]

By specifying 1 to parameter CCR No. 3405#4 on the system which does not use A or C as an axis name, the degree of a straight line or the value of chamfering or corner R can be commanded without a comma (,) as follows:

\[
A__ \quad C__ \quad R__
\]
NOTE
1 The following G codes are not applicable to the same block as commanded by direct input of drawing dimensions or between blocks of direct input of drawing dimensions which define sequential figures.
 1) G codes (other than G04) in group 00.
 2) G02, G03, G90, G92, and G94 in group 01.
2 Corner rounding cannot be inserted into a threading block.
3 Chamfering and corner R using the direct input of drawing dimensions cannot be used simultaneously with the chamfering and corner R described in Section 13.5. (The option for chamfering and corner R and that for the direct input of drawing dimensions cannot be selected simultaneously.)
4 When the end point of the previous block is determined in the next block according to sequential commands of direct input of drawing dimensions, the single block stop is not done, but the feed hold stop is done at the end point of the previous block.
5 The angle allowance in calculating the point of intersection in the program below is ±1°.
 (Because the travel distance to be obtained in this calculation is too large.)
 1) X_, A_; (If a value within 0°±1° or 180°±1° is specified for the angle instruction, the P/S alarm No.057 occurs.)
 2) Z_, A_; (If a value within 90°±1° or 270°±1° is specified for the angle instruction, the P/S alarm No. 057 occurs.)
6 An alarm occurs if the angle made by the 2 lines is within ±1° when calculating the point of intersection.
7 Chamfering or corner % is ignored if the angle made by the 2 lines is within ±1°.
8 Both a dimensional command (absolute programming) and angle instruction must be specified in the block following a block in which only the angle instruction is specified.
 (Example)
 N1 X_, A_, R_;
 N2, A_;
 N3 X_, Z_, A_;
 (In addition to the dimensional command, angle instruction must be specified in block No. 3.)
Examples

(Diameter specification, metric input)

N001 G50 X0.0 Z0.0 ;
N002 G01 X60.0, A90.0, C1.0 F80 ;
N003 Z–30.0, A180.0, R6.0 ;
N004 X100.0, A90.0 ;
N005 A170.0, R20.0 ;
N006 X300.0 Z–180.0, A112.0, R15.0 ;
N007 Z–230.0, A180.0 ;

...
13.7 RIGID TAPPING

Front face tapping cycles (G84) and side face tapping cycles (G88) can be performed either in conventional mode or rigid mode.

In conventional mode, the spindle is rotated or stopped, in synchronization with the motion along the tapping axis according to miscellaneous functions M03 (spindle CW rotation), M04 (spindle CCW rotation), and M05 (spindle stop).

In rigid mode, the spindle motor is controlled in the same way as a control motor, by the application of compensation to both motion along the tapping axis and that of the spindle.

For rigid tapping, each turn of the spindle corresponds to a certain amount of feed (screw lead) along the spindle axis. This also applies to acceleration/deceleration. This means that rigid tapping does not demand the use of float tappers as in the case of conventional tapping, thus enabling high-speed, high-precision tapping.

When the system is equipped with the optional multispindle control function, the second spindle can be used for rigid tapping.
13.7.1
Front Face Rigid
Tapping Cycle (G84) / Side Face Rigid
Tapping Cycle (G88)

Format

G84 X(U)_ C(H)_ Z(W)_ R_ P_ F_ M_ K_ ;
or
G88 Z(W)_ C(H)_ X(U)_ R_ P_ F_ M_ K_ ;

X_ C_ or Z_ C_ : Hole position data
Z_ or X_ : The distance from point R to the bottom of the hole
R_ : The distance from the initial level to point R level
P_ : Dwell time at the bottom of a hole
F_ : Cutting feedrate
K_ : Number of repeats (When it is needed.)
M_ : M code for C-axis clamp (when it is needed.)

Explanations

Once positioning for the X-axis (G84) or Z-axis (G88) has been completed, the spindle is moved, by rapid traverse, to point R. Tapping is performed from point R to point Z, after which the spindle stops and observes a dwell time. Then, the spindle starts reverse rotation, retracts to point R, stops rotating, then moves to the initial level by rapid traverse. During tapping, the feedrate override and spindle override are assumed to be 100%. For retraction (operation 5), however, a fixed override of up to 2000% can be applied by setting parameter No. 5211 (RGOVR), bit 3 (OVU) of parameter No. 5201, and bit 4 (DOV) of parameter No. 5200.

• Rigid mode

Rigid mode can be specified by applying any of the following methods:

• Specifying M29S***** before a tapping block
• Specifying M29S***** within a tapping block
• Handling G84 or G88 as a G code for rigid tapping (Set bit 0 (G84) of parameter No. 5200 to 1.)
In feed per minute mode, the feedrate divided by the spindle speed is equal to the screw lead. In feed per rotation mode, the feedrate is equal to the screw lead.

Limitations

- **S commands**

When a value exceeding the maximum rotation speed for the gear being used is specified, P/S alarm No. 200 is issued. For an analog spindle, when a command is specified such that more than 4095 pulses are generated during 8 ms (detection unit), P/S alarm No. 202 is issued. For a serial spindle, when a command is specified such that more than 32767 pulses are generated during 8 ms (detection unit), P/S alarm No. 202 is issued.

<Example>

For a built-in motor equipped with a detector having a resolution of 4095 pulses per rotation, the maximum spindle speed during rigid tapping is as follows:

For an analog spindle

\[(4095 \times 1000 + 8 \times 60) / 4095 = 7500 \text{ (rpm)}\]

For a serial spindle

\[(32767 \times 1000 + 8 \times 60) / 4095 = 60012 \text{ (rpm)}\] [Note: Ideal value]

- **F commands**

Specifying a value larger than the upper limit for cutting feed will cause P/S alarm No. 201 to be issued.

- **M29**

Specifying an S command or axis movement between M29 and M84 will cause P/S alarm No. 203 to be issued. Specifying M29 during a tapping cycle will cause P/S alarm No. 204 to be issued.

- **Rigid tapping command M code**

The M code used to specify rigid tapping mode is usually set in parameter No. 5210. To set a value of more than 255, however, use parameter No. 5212.

- **Maximum position deviation during movement along the tapping axis**

The maximum position deviation during movement along the tapping axis in rigid tapping mode is usually set in parameter No. 5310. Use parameter No. 5314, however, when setting a value of more than 32767, for example, according to the resolution of the detector being used.

- **R**

The value of R must be specified in a block which performs drilling. If the value is specified in a block which does not perform drilling, it is not stored as modal data.

- **Cancellation**

G00 to G03 (G codes in group 01) must not be specified in a block containing G84 or G88. If specified, G84 or G88 in that block is canceled.

- **Tool position offset**

Any tool position offset is ignored in canned cycle mode.

- **Units for F**

<table>
<thead>
<tr>
<th></th>
<th>Metric input</th>
<th>Inch input</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>G98</td>
<td>1 mm/min</td>
<td>0.01inch/min</td>
<td>Decimal point allowed</td>
</tr>
<tr>
<td>G99</td>
<td>0.01mm/rev</td>
<td>0.0001inch/rev</td>
<td>Decimal point allowed</td>
</tr>
</tbody>
</table>
Examples

Tapping axis feedrate: 1000 mm/min
Spindle speed: 1000 min⁻¹
Screw lead: 1.0 mm

<Programming for feed per minute>
G98 ; Command for feed per minute
G00 X100.0 ; Positioning
M29 S1000 ; Command for specifying rigid mode
G84 Z–100.0 R–20.0 F1000 ; Rigid tapping

<Programming for feed per rotation>
G99 ; Command for feed per rotation
G00 X100.0 ; Positioning
M29 S1000 ; Command for specifying rigid mode
G84 Z–100.0 R–20.0 F1.0 ; Rigid tapping
This chapter describes the following compensation functions:

14.1 TOOL OFFSET
14.2 OVERVIEW OF TOOL NOSE RADIUS COMPENSATION
14.3 DETAILS OF TOOL NOSE RADIUS COMPENSATION
14.4 TOOL COMPENSATION VALUES, NUMBER OF COMPENSATION VALUES, AND ENTERING VALUES FROM THE PROGRAM (G10)
14.5 AUTOMATIC TOOL OFFSET (G36, G37)
14.1 TOOl OFFSET

Tool offset is used to compensate for the difference when the tool actually used differs from the imagined tool used in programming (usually, standard tool).

![Fig. 14.1 Tool offset](image)

In this unit, there is no G code to specify tool offset. The tool offset is specified by T code.

14.1.1 Tool Geometry Offset and Tool Wear Offset

Tool geometry offset and tool wear offset are possible to divide the tool offset to the tool geometry offset for compensating the tool shape or tool mounting position and the tool wear offset for compensating the tool nose wear.

Total value of tool geometry offset value and tool wear offset value is set as the tool wear offset value without option.

NOTE

Tool geometry offset and tool wear offset are optioned.
There are two methods for specifying a T code as shown in Table 14.1.2(a) and Table 14.1.2(b).

14.1.2 T Code for Tool Offset

Format
- Lower digit of T code specifies geometry and wear offset number
- Lower digit of T code specifies wear offset number and higher digit number specifies tool selection number and geometry offset number

Table 14.1.2(a)

<table>
<thead>
<tr>
<th>Kind of T code</th>
<th>Meaning of T code</th>
<th>Parameter setting for specifying of offset No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-digit command</td>
<td>T ○ ○</td>
<td>When LD1, bit 0 of parameter No.5002, is set to 1, a tool wear offset number is specified with the last digit of a T code.</td>
</tr>
<tr>
<td></td>
<td>Tool wear and tool geometry offset number Tool selection</td>
<td>When LGN, bit 1 of parameter No.5002, is set to 0, the tool geometry offset number and tool wear offset number specified for a certain tool are the same.</td>
</tr>
<tr>
<td>4-digit command</td>
<td>T ○ ○ ○ ○</td>
<td>When LD1, bit 0 of parameter No.5002, is set to 0, a tool wear offset number is specified with the last two digits of a T code.</td>
</tr>
<tr>
<td></td>
<td>Tool wear and tool geometry offset number Tool selection</td>
<td></td>
</tr>
</tbody>
</table>

Table 14.1.2(b)

<table>
<thead>
<tr>
<th>Kind of T code</th>
<th>Meaning of T code</th>
<th>Parameter setting for specifying of offset No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-digit command</td>
<td>T ○ ○</td>
<td>When LD1, bit 0 of parameter No.5002, is set to 1, a tool wear offset number is specified with the last digit of a T code.</td>
</tr>
<tr>
<td></td>
<td>Tool wear offset number Tool selection and tool geometry offset number</td>
<td>When LGN, bit 1 of parameter No.5002, is set to 0, the tool geometry offset number and tool wear offset number specified for a certain tool are the same.</td>
</tr>
<tr>
<td>4-digit command</td>
<td>T ○ ○ ○ ○</td>
<td>When LD1, bit 0 of parameter No.5002, is set to 0, a tool wear offset number is specified with the last two digits of a T code.</td>
</tr>
<tr>
<td></td>
<td>Tool wear offset number Tool selection and tool geometry offset number</td>
<td></td>
</tr>
</tbody>
</table>

14.1.3 Tool Selection

Tool selection is made by specifying the T code corresponding to the tool number. Refer to the machine tool builder’s manual for the relationship between the tool selection number and the tool.

14.1.4 Offset Number

Tool offset number has two meanings. It specifies the offset distance corresponding to the number that is selected to begin the offset function. A tool offset number of 0 or 00 indicates that the offset amount is 0 and the offset is cancelled.
14.1.5 Offset

Explanations

- **Tool wear offset**

 There are two types of offset. One is tool wear offset and the other is tool geometry offset.

 The tool path is offset by the X, Y, and Z wear offset values for the programmed path. The offset distance corresponding to the number specified by the T code is added to or subtracted from the and position of each programmed block.

 ![Fig. 14.1.5(a) Movement of offset (1)](image)

 In Fig. 14.1.5(a), the vector with offset X, Y, and Z is called the offset vector. Compensation is the same as the offset vector.

- **Offset vector**

 Offset is cancelled when T code offset number 0 or 00 is selected. At the end of the cancelled block, the offset vector becomes 0.

 - \(\text{N1 X50.0 Z100.0 T0202 } \) ; Creates the offset vector corresponding to offset number 02
 - \(\text{N2 X200.0 } \)
 - \(\text{N3 X100.0 Z250.0 T0200 } \) ; Specifying offset number 00 deletes the offset vector.

 ![Fig. 14.1.5(b) Movement of offset (2)](image)

- **Offset cancel**

 With parameter LVC (No. 5003#6) set to 1, the offset is canceled when:

 1) The initial time after power is turned on.

 2) The reset key on the MDI unit is pressed.

 3) The a reset signal is input from the machine to the CNC.
Parameter LVC (No.5003#6) can be set so that offset will not be cancelled by pressing the reset key or by reset input.

- **Only T code**

When only a T code is specified in a block, the tool is moved by the wear offset value without a move command. The movement is performed at rapid traverse rate in the G00 mode. It is performed at feedrate in other modes.

When a T code with offset number 0 or 00 is specified by itself, movement is performed to cancel the offset.

WARNING

When G50 X_Z_T_; is specified

Tool is not moved.

The coordinate system in which the coordinate value of the tool position is (X,Z) is set. The tool position is obtained by subtracting the wear offset value corresponding to the offset number specified in the T code.

- **Tool geometry offset**

With the tool geometry offset, the work coordinate system is shifted by the X, Y, and Z geometry offset amounts. Namely, the offset amount corresponding to the number designated with the code is added to or subtracted from the current position.

NOTE

As well as wear offset, the tool can be compensated by parameter setting LGT(No.5002#4) to add or subtract the programmed end point of each block.

- **Offset cancel**

Specifying offset number 0, 00, or 0000 cancels offset.

NOTE

When the tool figure offset number having the same value as the tool wear offset number is specified (parameter No. 5002#1 (LGN) is 0), a specified T code having offset number 2 does not cancel the tool figure offset. When parameter No. 5002#5 (LGC) is set, however, offset number 0 can be used to cancel the tool figure offset too.

When parameter TGC (No. 5003#7) is set to 1, a reset can also cancel the tool figure offset.
Examples

1. When a tool geometry offset number and tool wear offset number are specified with the last two digits of a T code (when LGN, bit 1 of parameter No.5002, is set 0),
 N1 X50.0 Z100.0 T0202 ; Specifies offset number 02
 N2 Z200.0 ;
 N3 X100.0 Z250.0 T0200 ; Cancels offset

2. Assume that geometry offset is not cancelled with offset No.0 (when LGN, bit 1 of parameter No.5002, is set 1),
 N1 X50.0 Z100.0 T0202 ; Tool selection number (specified tool geometry offset number 02)
 N2 Z200.0 ;
 N3 X100.0 Z250.0 T0000 ; Cancels offset
This section describes the following operations when tool position offset is applied: G53, G28, G30, and G30.1 commands, manual reference position return, and the canceling of tool position offset with a T00 command.

14.1.6 G53, G28, G30, and G30.1 Commands When Tool Position Offset is Applied

Explanations

- Reference position return (G28) and G53 command when tool position offset is applied

Executing reference position return (G28) or a G53 command when tool position offset is applied does not cancel the tool position offset vector. The absolute position display is as follows, however, according to the setting of bit 4 (LGT) of parameter No. 5002.

<table>
<thead>
<tr>
<th>LGT = 0 (Tool geometry compensation is based on shift of the coordinate system.)</th>
<th>Tool position offset (without option)</th>
<th>Tool geometry compensation</th>
<th>Tool wear compensation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute position coordinate display</td>
<td>Block for reference position return or G53 command</td>
<td>The vector is not reflected. The coordinates are displayed as if the offset had been temporarily canceled.</td>
<td>The shift is reflected. Coordinates shifted according to the tool geometry compensation are displayed.</td>
</tr>
<tr>
<td>Next block</td>
<td>The vector is reflected.</td>
<td>Coordinates shifted according to the tool geometry compensation are displayed.</td>
<td>The vector is reflected.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LGT = 1 (Tool geometry compensation is based on tool movement.)</th>
<th>Tool position offset (without option)</th>
<th>Tool geometry compensation</th>
<th>Tool wear compensation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute position coordinate display</td>
<td>Block for reference position return or G53 command</td>
<td>The vector is not reflected. The coordinates are displayed as if the offset had been temporarily canceled.</td>
<td>The vector is not reflected. The coordinates are displayed as if the offset had been temporarily canceled.</td>
</tr>
<tr>
<td>Next block</td>
<td>The vector is reflected.</td>
<td>The vector is reflected.</td>
<td>The vector is reflected.</td>
</tr>
</tbody>
</table>

NOTE

Bit 6 (DAL) of parameter No. 3104 is set to 0 (the actual positions to which the tool position offset is applied are displayed in the absolute position display).
• Manual reference position return when tool offset is applied

Executing manual reference position return when tool offset is applied does not cancel the tool position offset vector. The absolute position display is as follows, however, according to the setting of bit 4 (LGT) of parameter No. 5002.

LGT = 0 (Tool geometry compensation is based on shift of the coordinate system.)

<table>
<thead>
<tr>
<th>Absolute position coordinate display</th>
<th>Tool geometry compensation</th>
<th>No option for tool wear compensation or tool figure and wear compensation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upon manual reference position return</td>
<td>The shift is reflected. Coordinates shifted according to tool geometry compensation are displayed.</td>
<td>The vector is not reflected. The coordinates are displayed as if the offset had been temporarily canceled.</td>
</tr>
<tr>
<td>Next block</td>
<td>Coordinates shifted according to tool geometry compensation are displayed.</td>
<td>The vector is reflected.</td>
</tr>
</tbody>
</table>

LGT = 1 (Tool geometry compensation is based on tool movement.)

<table>
<thead>
<tr>
<th>Absolute position coordinate display</th>
<th>Tool geometry compensation</th>
<th>No option for tool wear compensation or tool figure and wear compensation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upon manual reference position return</td>
<td>The vector is not reflected. The coordinates are displayed as if the offset had been temporarily canceled.</td>
<td>The vector is not reflected. The coordinates are displayed as if the offset had been temporarily canceled.</td>
</tr>
<tr>
<td>Next block</td>
<td>The vector is reflected.</td>
<td>The vector is reflected.</td>
</tr>
</tbody>
</table>

NOTE

Bit 6 (DAL) of parameter No. 3104 is set to 0 (the actual positions to which the tool position offset is applied are displayed in the absolute position display).
Whether specifying T00 alone, while tool position offset is applied, cancels the offset depends on the settings of the following parameters:

When the tool geometry/wear compensation option is selected

<table>
<thead>
<tr>
<th>LGN (No.5002#1)</th>
<th>LGT (No.5002#4)</th>
<th>LGC (No.5002#5)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>LGN = 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LGT=0</td>
<td>LGC=0</td>
<td>Not canceled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LGC=1</td>
<td>Canceled</td>
</tr>
<tr>
<td></td>
<td>LGT=1</td>
<td>LWM=0</td>
<td>Canceled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LWM=1</td>
<td>Not canceled</td>
</tr>
</tbody>
</table>

NOTE
1. When LGT=0, LWM is unrelated.
2. When LGT=1, LGC is unrelated, even when LGN = 0.

<table>
<thead>
<tr>
<th>LGN (No.5002#1)</th>
<th>LGT (No.5002#4)</th>
<th>LGC (No.5002#5)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>LGN = 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LGT=0</td>
<td>LGC is unrelated.</td>
<td>Canceled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LWM (No.5002#6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LGT=1</td>
<td>LWM=0</td>
<td>Canceled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LWM=1</td>
<td>Not canceled</td>
</tr>
</tbody>
</table>

NOTE
1. When LGT = 0, LWM is unrelated.
2. When LGT = 1, LGC is unrelated.
When the tool geometry/wear compensation option is not selected

<table>
<thead>
<tr>
<th>LGN (No.5002#1)</th>
<th>LGT (No.5002#4)</th>
<th>LGC (No.5002#5)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>The geometry offset number is: 0: Same as the wear offset number 1: Same as the tool selection number</td>
<td>Geometry compensation is applied: 0: Based on shift of the coordinate system 1: Based on movement of the tool</td>
<td>The geometry offset is: 0: Not canceled with T00 1: Canceled with T00</td>
<td></td>
</tr>
<tr>
<td>LGN is unrelated. The tool position offset number always uses the low-order digits.</td>
<td>LGT is unrelated. Tool position offset is always applied based on the movement of the tool.</td>
<td>LGC is unrelated.</td>
<td></td>
</tr>
<tr>
<td>LWM=0 LWM=1</td>
<td></td>
<td>Canceled Not canceled</td>
<td></td>
</tr>
</tbody>
</table>
14.2
OVERVIEW OF TOOL NOSE RADIUS COMPENSATION

It is difficult to produce the compensation necessary to form accurate parts when using only the tool offset function due to tool nose roundness in taper cutting or circular cutting. The tool nose radius compensation function compensates automatically for the above errors.

![Diagram showing tool path with and without compensation](image)

Fig 14.2 Tool path of tool nose radius compensation

14.2.1
Imaginary Tool Nose

The tool nose at position A in the following figure does not actually exist. The imaginary tool nose is required because it is usually more difficult to set the actual tool nose radius center to the start position than the imaginary tool nose (Note). Also when imaginary tool nose is used, the tool nose radius need not be considered in programming. The position relationship when the tool is set to the start position is shown in the following figure.

![Diagram showing start positions with imaginary tool nose](image)

Fig. 14.2.1(a) Tool nose radius center and imaginary tool nose
CAUTION

In a machine with reference positions, a standard position like the turret center can be placed over the start position. The distance from this standard position to the nose radius center or the imaginary tool nose is set as the tool offset value. Setting the distance from the standard position to the tool nose radius center as the offset value is the same as placing the tool nose radius center over the start position, while setting the distance from the standard position to the imaginary tool nose is the same as placing the imaginary tool nose over the standard position. To set the offset value, it is usually easier to measure the distance from the standard position to the imaginary tool nose than from the standard position to the tool nose radius center.

Fig 14.2.1(b) Tool offset value when the turret center is placed over the start position

Unless tool nose radius compensation is performed, the tool nose center path is the same as the programmed path.

If tool nose radius compensation is used, accurate cutting will be performed.

Fig 14.2.1(c) Tool path when programming using the tool nose center

Without tool nose radius compensation, the imaginary tool nose path is the same as the programmed path.

With tool nose radius compensation, accurate cutting will be performed.

Fig 14.2.1(d) Tool path when programming using the imaginary tool nose
14.2.2 Direction of Imaginary Tool Nose

The direction of the imaginary tool nose viewed from the tool nose center is determined by the direction of the tool during cutting, so it must be set in advance as well as offset values.

The direction of the imaginary tool nose can be selected from the eight specifications shown in the Fig. 14.2.2 below together with their corresponding codes.

This Fig 14.2.2 illustrates the relation between the tool and the start position. The following apply when the tool geometry offset and tool wear offset option are selected.

![Fig. 14.2.2 Direction of imaginary tool nose](image-url)
Imaginary tool nose numbers 0 and 9 are used when the tool nose center coincides with the start position. Set imaginary tool nose number to address OFT for each offset number. Bit 7 (WNP) of parameter No. 5002 is used to determine whether the tool geometry offset number or the tool wear offset number specifies the direction of the virtual tool nose for tool nose radius compensation.

![Imaginary tool nose number 0 to 9](image)

Limitations

- **Plane selection**

 Virtual tool nose directions 1 to 8 can be used only in the G18 (Z–X) plane. For virtual tool nose 0 or 9, compensation is applied in both the G17 and G19 planes.

14.2.3 Offset Number and Offset Value

Explanations

- **Offset number and offset value**

 ![Tool nose radius compensation value](image)

 This value is set from the MDI according to the offset number. When the options of tool geometry compensation and tool wear compensation are selected, offset values become as follows:

<table>
<thead>
<tr>
<th>Offset number</th>
<th>OFX (Offset value on X axis)</th>
<th>OFZ (Offset value on Z axis)</th>
<th>OFR (Tool nose radius compensation value)</th>
<th>OFT (Direction of imaginary tool nose)</th>
<th>OFY (Offset value on Y axis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>0.040</td>
<td>0.020</td>
<td>0.20</td>
<td>1</td>
<td>0.030</td>
</tr>
<tr>
<td>02</td>
<td>0.060</td>
<td>0.030</td>
<td>0.25</td>
<td>2</td>
<td>0.040</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>0.050</td>
<td>0.015</td>
<td>0.12</td>
<td>6</td>
<td>0.025</td>
</tr>
<tr>
<td>99</td>
<td>0.030</td>
<td>0.025</td>
<td>0.24</td>
<td>3</td>
<td>0.035</td>
</tr>
</tbody>
</table>
When the options of tool geometry compensation and tool wear compensation are selected, the offset values become as follows:

Table 14.2.3(b) Tool geometry offset

<table>
<thead>
<tr>
<th>Geometry offset number</th>
<th>OFGX (X-axis geometry offset amount)</th>
<th>OFGZ (Z-axis geometry offset amount)</th>
<th>OFGR (Tool nose radius geometry offset value)</th>
<th>OFT (Imaginary tool nose direction)</th>
<th>OFGY (Y-axis geometry offset amount)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G01</td>
<td>10.040</td>
<td>50.020</td>
<td>0</td>
<td>1</td>
<td>70.020</td>
</tr>
<tr>
<td>G02</td>
<td>20.060</td>
<td>30.030</td>
<td>0</td>
<td>2</td>
<td>90.030</td>
</tr>
<tr>
<td>G03</td>
<td>0</td>
<td>0</td>
<td>0.20</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>G04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 14.2.3(c) Tool wear offset

<table>
<thead>
<tr>
<th>Wear offset number</th>
<th>OFGX (X-axis wear offset amount)</th>
<th>OFGZ (Z-axis wear offset amount)</th>
<th>OFGR (Tool nose radius wear offset value)</th>
<th>OFT (Imaginary tool nose direction)</th>
<th>OFGY (Y-axis wear offset amount)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W01</td>
<td>0.040</td>
<td>0.020</td>
<td>0</td>
<td>1</td>
<td>0.010</td>
</tr>
<tr>
<td>W02</td>
<td>0.060</td>
<td>0.030</td>
<td>0</td>
<td>2</td>
<td>0.020</td>
</tr>
<tr>
<td>W03</td>
<td>0</td>
<td>0.20</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>W04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Tool nose radius compensation**
 In this case, the tool nose radius compensation value is the sum of the geometry or the wear offset value.

 \[
 \text{OFR} = \text{OFGR} + \text{OFWR}
 \]

- **Imaginary tool nose direction**
 The imaginary tool nose direction may be set for either the geometry offset or the wear offset.
 However, the last designated direction later is effective.

- **Command of offset value**
 A offset number is specified with the same T code as that used for tool offset. For details, see Subsec. II–14.1.2.

NOTE

When the geometry offset number is made common to the tool selection by the parameter LGT(No.5002#1)setting and a T code for which the geometry offset and wear offset number differ from each other is designated, the imaginary tool nose direction specified by the geometry offset number is valid.

Example) T0102

\[
\text{OFR} = \text{RFGR}_{01} + \text{OFWR}_{02}
\]

\[
\text{OFT} = \text{OFT}_{01}
\]
The range of the offset value is as follows:

<table>
<thead>
<tr>
<th>Increment system</th>
<th>Metric system</th>
<th>Inch system</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS–B</td>
<td>±999.999 mm</td>
<td>±99.9999 inch</td>
</tr>
<tr>
<td>IS–C</td>
<td>±999.999 mm</td>
<td>±99.9999 inch</td>
</tr>
</tbody>
</table>

The offset value corresponding to the offset number 0 is always 0. No offset value can be set to offset number 0.

14.2.4 Work Position and Move Command

In tool nose radius compensation, the position of the workpiece with respect to the tool must be specified.

<table>
<thead>
<tr>
<th>G code</th>
<th>Workpiece position</th>
<th>Tool path</th>
</tr>
</thead>
<tbody>
<tr>
<td>G40</td>
<td>(Cancel)</td>
<td>Moving along the programmed path</td>
</tr>
<tr>
<td>G41</td>
<td>Right side</td>
<td>Moving on the left side the programmed path</td>
</tr>
<tr>
<td>G42</td>
<td>Left side</td>
<td>Moving on the right side the programmed path</td>
</tr>
</tbody>
</table>

The tool is offset to the opposite side of the workpiece.
The workpiece position can be changed by setting the coordinate system as shown below.

- **Tool movement when the workpiece position does not change**

G40, G41, and G42 are modal.
Don’t specify G41 while in the G41 mode. If you do, compensation will not work properly.
Don’t specify G42 while in the G42 mode for the same reason.
G41 or G42 mode blocks in which G41 or G42 are not specified are expressed by (G41) or (G42) respectively.

When the tool is moving, the tool nose maintains contact with the workpiece.
Tool movement when the workpiece position changes

The workpiece position against the tool changes at the corner of the programmed path as shown in the following figure.

Although the workpiece does not exist on the right side of the programmed path in the above case, the existence of the workpiece is assumed in the movement from A to B. The workpiece position must not be changed in the block next to the start-up block. In the above example, if the block specifying motion from A to B were the start-up block, the tool path would not be the same as the one shown.

Start-up

The block in which the mode changes to G41 or G42 from G40 is called the start-up block.

\[
\text{G40} \quad ; \\
\text{G41} \quad ; \quad \text{(Start-up block)}
\]

Transient tool movements for offset are performed in the start-up block. In the block after the start-up block, the tool nose center is positioned vertically to the programmed path of that block at the start position.
The block in which the mode changes to G40 from G41 or G42 is called the offset cancel block.

\[\text{G41 } ; \]
\[\text{G40 } ; \] (Offset cancel block)

The tool nose center moves to a position vertical to the programmed path in the block before the cancel block. The tool is positioned at the end position in the offset cancel block (G40) as shown below.

When is specified again in G41/G42 mode, the tool nose center is positioned vertical to the programmed path of the preceding block at the end position of the preceding block.

In the block that first specifies G41/G42, the above positioning of the tool nose center is not performed.

When you wish to retract the tool in the direction specified by \(X(U) \) and \(Z(W) \) cancelling the tool nose radius compensation at the end of machining the first block in the figure below, specify the following:

\[\text{G40} \ X(U)_- \ Z(W)_- \ I_- \ K_- ; \]

\[\text{G40} \ U_- W_- I_- K_- ; \]
The workpiece position specified by addresses I and K is the same as that in the preceding block. If I and/or K is specified with G40 in the cancel mode, the I and/or K is ignored.

<table>
<thead>
<tr>
<th>G40 X_ Z_ I_ K_;</th>
<th>Tool nose radius compensation</th>
</tr>
</thead>
<tbody>
<tr>
<td>G40 G02 X_ Z_ I_ K_;</td>
<td>Circular interpolation</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
G40 & \text{ G01 X_ Z_ ;} \\
G40 & \text{ G01 X_ Z_ I_ K_; Offset cancel mode (I and k are ineffective.)}\n\end{align*}
\]

The numeral s followed I and K should always be specified as radius values.

Examples

\[
\begin{align*}
(1) & \text{ G42 G00 X60.0 ;} \\
(2) & \text{ G01 X120.0 W-150.0 F10 ;} \\
(3) & \text{ G40 G00 X300.0 W150.0 I40.0 K-30.0 ;}
\end{align*}
\]
14.2.5
Notes on Tool Nose Radius Compensation

Explanations

- Tool movement when two or more blocks without a move command should not be programmed consecutively
 1. M05 ; M code output
 2. S210 ; S code output
 3. G04 X1000 ; Dwell
 4. G01 U0 ; Feed distance of zero
 5. G98 ; G code only
 6. G10 P01 X10.0 Z20.0 R0.5 Q2 ; Offset change

If two or more of the above blocks are specified consecutively, the tool nose center comes to a position vertical to the programmed path of the preceding block at the end of the preceding block. However, if the no movement commands is 4 above, the above tool motion is attained only with one block.

- Tool nose radius compensation with G90 or G94

 Tool nose radius compensation with G90 (outer diameter/internal diameter cutting cycle) or G94 (end face turning cycle) is as follows:

 1. Motion for imaginary tool nose numbers

 For each path in the cycle, the tool nose center path is generally parallel to the programmed path.
2. Direction of the offset

The offset direction is indicated in the figure below regardless of the G41/G42 mode.

- **Tool nose radius compensation with G71 to G76 or G78**

 When one of following cycles is specified, the cycle deviates by a tool nose radius compensation vector. During the cycle, no intersection calculation is performed.

 - G71 (Stock removal in turning or traverse grinding cycle)
 - G72 (Stock removal in facing or traverse direct constant–dimension grinding cycle)
 - G73 (Pattern repeating or Oscillation grinding cycle)
 - G74 (End face peck drilling)
 - G75 (Outer diameter/internal diameter drilling)
 - G76 (Multiple threading cycle)
 - G78 (Threading cycle)

- **Tool nose radius compensation when chamfering is performed**

 Movement after after compensation is shown below.

- **Tool nose radius compensation when a corner arc is inserted**

 Movement after compensation is shown below.
In this case, tool nose radius compensation is not performed.
14.3 DETAILS OF TOOL NOSE RADIUS COMPENSATION

This section provides a detailed explanation of the movement of the tool for tool nose radius compensation outlined in Section 14.2. This section consists of the following subsections:

14.3.1 General
14.3.2 Tool Movement in Start–up
14.3.3 Tool Movement in Offset Mode
14.3.4 Tool Movement in Offset Mode Cancel
14.3.5 Interference Check
14.3.6 Overcutting by Tool Nose Radius Compensation
14.3.7 Correction in Chamfering and Corner Arcs
14.3.8 Input Command from MDI
14.3.9 General Precautions for Offset Operations
14.3.10 G53, G28, G30, and G30.1 Commands in Tool–tip Radius Compensation Mode

14.3.1 General

The tool nose radius center offset vector is a two dimensional vector equal to the offset value specified in a T code, and the is calculated in the CNC. Its dimension changes block by block according to tool movement. This offset vector (simply called vector herein after) is internally crated by the control unit as required for proper offsetting and to calculate a tool path with exact offset (by tool nose radius) from the programmed path. This vector is deleted by resetting. The vector always accompanies the tool as the tool advances. Proper understanding of vector is essential to accurate programming. Read the description below on how vectors are created carefully.

G40, G41 or G42 is used to delete or generate vectors. These codes are used together with G00, G01, G02, G03 or G33 to specify a mode for tool motion (Offsetsing).

<table>
<thead>
<tr>
<th>G code</th>
<th>Function</th>
<th>Workpiece position</th>
</tr>
</thead>
<tbody>
<tr>
<td>G40</td>
<td>Tool nose radius compensation cancel</td>
<td>Neither</td>
</tr>
<tr>
<td>G41</td>
<td>Left offset along tool path</td>
<td>Right</td>
</tr>
<tr>
<td>G42</td>
<td>Right offset along tool path</td>
<td>Left</td>
</tr>
</tbody>
</table>

G41 and G42 specify an off mode, while G40 specifies cancellation of the offset.

• Cancel mode

The system enters the cancel mode immediately after the power is turned on, when the RESET button on the MDI is pushed or a program is forced to end by executing M02 or M30. (the system may not enter the cancel mode depending on the machine tool.) In the cancel mode, the vector is set to zero, and the path of the center of tool nose coincides with the programmed, path. A program must end in cancel mode. If it ends in the offset mode, the tool cannot be positioned at the end point, and the tool stops at a location the vector length away from the end point.
Start-up

When a block which satisfies all the following conditions is executed in cancel mode, the system enters the offset mode. Control during this operation is called start-up.

- G41 or G42 is contained in the block, or has been specified to set the system enters the offset mode. Control during this operation is called start-up.
- The offset number for tool nose radius compensation is not 00.
- X or Z moves is specified in the block and the move distance is not zero.

A circular command (G02 or G03) is not allowed in start-up. If specified, P/S alarm (PS34) will occur. Two blocks are read in during start-up. The first block is executed, and the second block is entered into the tool nose radius compensation buffer. In the single block mode, two blocks are read and the first block is executed, then the machine stops. In subsequent operations, two blocks are read in advance, so the CNC has the block currently being executed, and the next two blocks.

Inner side and outer side

When an angle of intersection created by tool paths specified with move commands for two blocks is over 180°, it is referred to as “inner side.” When the angle is between 0° and 180°, it is referred to as “outer side.”

Meaning of symbols

The following symbols are used in subsequent figures:
- S indicates a position at which a single block is executed once.
- SS indicates a position at which a single block is executed twice.
- SSS indicates a position at which a single block is executed three times.
- L indicates that the tool moves along a straight line.
- C indicates that the tool moves along an arc.
- r indicates the tool nose radius compensation value.
- An intersection is a position at which the programmed paths of two blocks intersect with each other after they are shifted by r.
- indicates ⋄ the center of the tool nose radius.
14.3.2 Tool Movement in Start–Up

Explanations

- Tool movement around an inner side of a corner \((180^\circ \leq \alpha)\)

- Tool movement around the outside of a corner at an obtuse angle \((90^\circ \leq \alpha < 180^\circ)\)

When the offset cancel mode is changed to offset mode, the tool moves as illustrated below (start–up):
Tool movement around the outside of an acute angle ($\alpha<90^\circ$)

- **Linear→Linear**

- **Linear→Circular**

Tool movement around the outside linear→linear at an acute angle less than 1 degree ($\alpha<1^\circ$)

A block without tool movement specified at start-up

If the command is specified at start-up, the offset vector is not created.

```
G91 G40 ...
N6 U100.0 W100.0 ;
N7 G41 U0 ;
N8 U=100.0 ;
N9 U=100.0 W100.0 ;
```

NOTE

For the definition of blocks that do not move the tool, see Subsec. II–14.3.3.
14.3.3 Tool Movement in Offset Mode

In the offset mode, the tool moves as illustrated below:

Explanations

- Tool movement around the inside of a corner ($180^\circ \leq \alpha$)

Linear→Linear

- Workpiece and programmed path
- Tool nose radius center path
- Intersection

Linear→Circular

- Workpiece and programmed path
- Tool nose radius center path and intersection

Circular→Linear

- Workpiece and programmed path
- Tool nose radius center path and intersection

Circular→Circular

- Workpiece and programmed path
- Tool nose radius center path and intersection
• Tool movement around the inside \((\alpha < 1^\circ)\) with an abnormally long vector, linear \(\rightarrow\) linear

Also in case of arc to straight line, straight line to arc and arc to arc, the reader should infer in the same procedure.
• Tool movement around the outside corner at an obtuse angle ($90^\circ \leq \alpha < 180^\circ$)
• Tool movement around the outside corner at an acute angle ($\alpha<90^\circ$)
• When it is exceptional
 • End position for the arc is not on the arc

If the end of a line leading to an arc is programmed as the end of the arc by mistake as illustrated below, the system assumes that tool nose radius compensation has been executed with respect to an imaginary circle that has the same center as the arc and passes the specified end position. Based on this assumption, the system creates a vector and carries out compensation. The resulting tool nose radius center path is different from that created by applying tool nose radius compensation to the programmed path in which the line leading to the arc is considered straight.

The same description applies to tool movement between two circular paths.
If the tool nose radius compensation value is sufficiently small, the two circular Tool nose radius center paths made after compensation intersect at a position (P). Intersection P may not occur if an excessively large value is specified for tool nose radius compensation. When this is predicted, P/S alarm (No. 33) occurs at the end of the previous block and the tool is stopped. In the example shown below, Tool nose radius center paths along arcs A and B intersect at P when a sufficiently small value is specified for tool nose radius compensation. If an excessively large value is specified, this intersection does not occur.

When the tool nose radius compensation value is large

When the tool nose radius compensation value is small

Center of the arc B

Center of the arc A

Alarm (No. 33) occurs and the tool stops

Programmed path

Arc A

Arc B

Alarm (No. 033) occurs and the tool stops (G41)

N5 G01 W100.0 ;
N6 G02 W100.0 I0 J0 ;
N7 G03 U–100.0 I–100.0 ;

If the center of the arc is identical with the start position or end point, P/S alarm (No. 038) is displayed, and the tool will stop at the end position of the preceding block.
The offset direction is decided by G codes (G41 and G42) for tool nose radius and the sign of tool nose radius compensation value as follows.

<table>
<thead>
<tr>
<th>G code</th>
<th>Sign of offset value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+</td>
</tr>
<tr>
<td>G41</td>
<td>Left side offset</td>
</tr>
<tr>
<td></td>
<td>-</td>
</tr>
<tr>
<td>G42</td>
<td>Right side offset</td>
</tr>
</tbody>
</table>

The offset direction can be changed in the offset mode. If the offset direction is changed in a block, a vector is generated at the intersection of the tool nose radius center path of that block and the tool nose radius center path of a preceding block. However, the change is not available in the start-up block and the block following it.
• Tool nose radius center path with an intersection

Linear→Linear

- Workpiece
 - Programmed path
 - Tool nose radius center path

Linear→Circular

- Workpiece
 - Programmed path
 - Tool nose radius center path

Circular→Linear

- Workpiece
 - Programmed path
 - Tool nose radius center path

Circular→Circular

- Workpiece
 - Programmed path
 - Tool nose radius center path
When changing the offset direction in block A to block B using G41 and G42, if intersection with the offset path is not required, the vector normal to block B is created at the start point of block B.

- Tool nose radius center path without an intersection

![Diagram showing tool nose radius center paths and programmed paths for different movement types (Linear→Linear, Linear→Circular, Circular→Circular).]
• **Temporary tool nose radius compensation cancel**

If the following command is specified in the offset mode, the offset mode is temporarily canceled then automatically restored. The offset mode can be canceled and started as described in Subsections II–14.3.2 and II–14.3.4.

• **Specifying G28 (automatic return to the reference position) in the offset mode**

If G28 is specified in the offset mode, the offset mode is canceled at an intermediate position. If the vector still remains after the tool is returned to the reference position, the components of the vector are reset to zero with respect to each axis along which reference position return has been made.

![Diagram showing G28 and G00 commands with intermediate position](image)

• **Tool nose radius compensation G code in the offset mode**

The offset vector can be set to form a right angle to the moving direction in the previous block, irrespective of machining inner or outer side, by commanding the tool nose radius compensation G code (G41, G42) in the offset mode, independently. If this code is specified in a circular command, correct circular motion will not be obtained.

When the direction of offset is expected to be changed by the command of tool nose radius compensation G code (G41, G42), refer to "Change in the offset direction in the offset mode" in Subsec.14.3.3.
During offset mode, if G50 is commanded, the offset vector is temporarily cancelled and thereafter offset mode is automatically restored. In this case, without movement of offset cancel, the tool moves directly from the intersecting point to the commanded point where offset vector is canceled. Also when restored to offset mode, the tool moves directly to the intersecting point.

Command cancelling the offset vector temporality

Workpiece coordinate system setting (G50)

See Sections II–14.1 (G90, G92, G94) and II–14.2 (G70 to G76) for the tool nose radius compensation is related canned cycles.

Canned cycles (G90, G92, G94) and Multiple repetitive cycles (G71 to G76)

See Sections II–14.1 (G90, G92, G94) and II–14.2 (G70 to G76) for the tool nose radius compensation is related canned cycles.
• A block without tool movement

The following blocks have no tool movement. In these blocks, the tool will not move even if tool nose radius compensation is effected.

1. M05 ; M code output
2. S21 ; S code output
3. G04 X10.0 ; Dwell
4. G10 P01 X10 Z20 R10.0 ; tool nose radius compensation value setting
5. (G17) Z200.0 ; Move command not included in the offset plane.
6. G98 ; G code only
7. X0 ; Move distance is zero.

• A block without tool movement specified in offset mode

When a single block without tool movement is commanded in the offset mode, the vector and Tool nose radius center path are the same as those when the block is not commanded. This block is executed at the single block stop point.

However, when the move distance is zero, even if the block is commanded singly, tool motion becomes the same as that when more than one block of without tool movement are commanded, which will be described subsequently.
• Corner movement

When two or more vectors are produced at the end of a block, the tool moves linearly from one vector to another. This movement is called the corner movement.
If these vectors almost coincide with each other, the corner movement isn’t performed and the latter vector is ignored.

If ΔVx ≤ ΔVlimit and ΔVy ≤ ΔVlimit, the latter vector is ignored. The ΔVlimit is set in advance by parameter (No. 5010).
If these vectors do not coincide, a move is generated to turn around the corner. This move belongs to the latter block.

• Interruption of manual operation

For manual operation during the tool nose radius compensation, refer to Section III–3.5, “Manual Absolute ON and OFF.”
14.3.4
Tool Movement in Offset Mode Cancel

Explanations

- Tool movement around an inside corner \((180^\circ \leq \alpha)\)

- Tool movement around an outside corner at an obtuse angle \((90^\circ \leq \alpha < 180^\circ)\)
- Tool movement around an outside corner at an acute angle ($\alpha<90^\circ$)

![Linear→Linear diagram]

- Tool movement around the outside linear→linear at an acute angle less than 1 degree ($\alpha<1^\circ$)

![Circular→Linear diagram]

- A block without tool movement specified together with offset cancel

When a block without tool movement is commanded together with an offset cancel, a vector whose length is equal to the offset value is produced in a normal direction to tool motion in the earlier block, the vector is cancelled in the next move command.

```
N6 G91 U100.0 W100.0 ;
N7 G40 ;
N8 U0 W100.0 ;
```

![A block without tool movement specified together with offset cancel diagram]
If a G41 or G42 block precedes a block in which G40 and I_, J_, K_ are specified, the system assumes that the path is programmed as a path from the end position determined by the former block to a vector determined by (I,J), (I,K), or (J,K). The direction of compensation in the former block is inherited.

In the N1 block, the tool nose radius center moves towards P.
In the N2 block, the tool nose radius center moves towards E.

In this case, note that the CNC obtains an intersection of the tool path irrespective of whether inner or outer side machining is specified.

When an intersection is not obtainable, the tool comes to the normal position to the previous block at the end of the previous block.
14.3.5 Interference Check

Tool overcutting is called interference. The interference check function checks for tool overcutting in advance. However, all interference cannot be checked by this function. The interference check is performed even if overcutting does not occur.

Explanations

- Criteria for detecting interference

 1. The direction of the tool nose radius path is different from that of the programmed path (from 90 degrees to 270 degrees between these paths).
(2) In addition to the condition (1), the angle between the start point and end point on the Tool nose radius center path is quite different from that between the start point and end point on the programmed path in circular machining (more than 180 degrees).

In the above example, the arc in block N6 is placed in the one quadrant. But after tool nose radius compensation, the arc is placed in the four quadrants.
(1) Removal of the vector causing the interference
When tool nose radius compensation is performed for blocks A, B and C and vectors V1, V2, V3 and V4 between blocks A and B, and V5, V6, V7 and V8 between B and C are produced, the nearest vectors are checked first. If interference occurs, they are ignored. But if the vectors to be ignored due to interference are the last vectors at the corner, they cannot be ignored.

Check between vectors V4 and V5
Interference V4 and V5 are ignored.

Check between V3 and V6
Interference V3 and V6 are ignored

Check between V2 and V7
Interference V2 and V7 are Ignored

Check between V1 and V8
Interference V1 and V8 are cannot be ignored

If while checking, a vector without interference is detected, subsequent vectors are not checked. If block B is a circular movement, a linear movement is produced if the vectors are interfered.

(Example 1) The tool moves linearly from V1 to V8

![Diagram showing tool movement and interference vectors]
(Example 2) The tool moves linearly from V_1, V_2, V_7, to V_8

(2) If the interference occurs after correction (1), the tool is stopped with an alarm.
If the interference occurs after correction (1) or if there are only one pair of vectors from the beginning of checking and the vectors interfere, the P/S alarm (No.41) is displayed and the tool is stopped immediately after execution of the preceding block. If the block is executed by the single block operation, the tool is stopped at the end of the block.

After ignoring vectors V_2 and V_5 because of interference, interference also occurs between vectors V_1 and V_6. The alarm is displayed and the tool is stopped.
• When interference is assumed although actual interference does not occur

(1) Depression which is smaller than the tool nose radius compensation value

There is no actual interference, but since the direction programmed in block B is opposite to that of the path after tool nose radius compensation the tool stops and an P/S alarm (No.041) is displayed.

(2) Groove which is smaller than the tool nose radius compensation value

Like (1), the direction is reverse in block B.
14.3.6 Overcutting by Tool Nose Radius Compensation

Explanations

- **Machining an inside corner at a radius smaller than the tool nose radius**

 When the radius of a corner is smaller than the cutter radius, because the inner offsetting of the cutter will result in overcuttings, an alarm is displayed and the CNC stops at the start of the block. In single block operation, the overcutting is generated because the tool is stopped after the block execution.

- **Machining a groove smaller than the tool nose radius**

 Since the tool nose radius compensation forces the path of the center of the tool to move in the reverse of the programmed direction, overcutting will result. In this case an alarm is displayed and the CNC stops at the start of the block.
• Machining a step smaller than the tool nose radius

When machining of the step is commanded by circular machining in the case of a program containing a step smaller than the tool nose radius, the path of the center of tool with the ordinary offset becomes reverse to the programmed direction. In this case, the first vector is ignored, and the tool moves linearly to the second vector position. The single block operation is stopped at this point. If the machining is not in the single block mode, the cycle operation is continued. If the step is of linear, no alarm will be generated and cut correctly. However uncut part will remain.

14.3.7 Correction in Chamfering and Corner Arcs

In chamfering or corner arcs, tool nose radius compensation only be performed when an ordinary intersection exists at the corner. In offset cancel mode, a start-up block or when exchanging the offset direction, compensation cannot be performed, an P/S alarm (No.39) is displayed and the tool is stopped.

In inner chamfering or inner corner arcs, if the chamfering value or corner arc value is smaller than the tool nose radius value, the tool is stopped with an P/S alarm (No.39) since overcutting will occur.

The valid inclination angle of the programmed path in the blocks before and after the corner is 1 degree or less so that the P/S alarm (No.52, 54) generated by the calculating error of tool nose radius compensation does not occur.
The following example shows a machining area which cannot be cut sufficiently.

In inner chamfering, if the portion of the programmed path that is not a part of the chamfering (in the above figure ℓ_1 or ℓ_2) is in following range, insufficiently cut area will exist.

$$0 \leq \ell_1 \text{ or } \ell_2 < r \cdot \tan 22.5^\circ \ (r : \text{tool nose radius})$$

Enlarged view on the remaining machining area

Although the tool should be positioned at 2 in the above figure, the tool is positioned at 1 (the tool nose is tangent to line L).

Thus, area 3 is not machined.

P/S alarm No.52 or 55 is displayed in the following cases:

- Limit of programmed path with chamfering
- End point P_2
- The alarm is displayed at this path
- Tool nose center path without chamfering
- Tool nose center path with chamfering
- Programmed path
- Start point
- Tool nose radius center path

Limit of programmed path with chamfering
Ending point P_2
The alarm is displayed at this path
Start point
 Tool nose radius center path
Programmed path

Limit of programmed path with chamfering
Ending point P_2
The alarm is displayed at this path
Start point
 Tool nose radius center path
Programmed path
In outer chamfering with an offset, a limit is imposed on the programmed path. The path during chamfering coincides with the intersection points P_1 or P_2 without chamfering, therefore, outer chamfering is limited. In the figure above, the end point of the tool center path with chamfering coincides with the intersection point (P_2) of the next block without chamfering. If the chamfering value is more than the limit value specified, P/S alarm No.52 or 55 will be displayed.

Tool nose radius compensation is not performed for commands input from the MDI. However, when automatic operation using absolute commands is temporarily stopped by the single block function, MDI operation is performed, then automatic operation starts again, the tool path is as follows:

In this case, the vectors at the start position of the next block are translated and the other vectors are produced by the next two blocks. Therefore, from next block but one, tool nose radius compensation is accurately performed.

When position P_A, P_B, and P_C are programmed in an absolute command, tool is stopped by the single block function after executing the block from P_A to P_B and the tool is moved by MDI operation. Vectors V_{B1} and V_{B2} are translated to V_{B1}' and V_{B2}' and offset vectors are recalculated for the vectors V_{C1} and V_{C2} between block P_B–P_C and P_C–P_D. However, since vector V_{B2} is not calculated again, compensation is accurately performed from position P_C.
14.3.9 General Precautions for Offset Operations

- Changing the offset value

In general, the offset value is changed in cancel mode, or when changing tools. If the offset value is changed in offset mode, the vector at the end point of the block is calculated for the new offset value.

When some vectors are produced between blocks N6 and N7, the vector at the end point of the present blocks is calculated using the offset value of the block N6.

When a negative offset value is specified, the program is executed for the figure which is created by exchanging G41 for G42 or G42 for G41 in the process sheet. A tool machining an inner profile will machine the outer profile, and tool machining the outer profile will machine the inner profile.

An example is shown below. In general, CNC machining is programmed assuming a positive offset value. When a program specifies a tool path as shown in 1, the tool will move as shown in 2 if a negative offset is specified. The tool in 2 will move as shown in 1 when the sign of the offset value is reserved.

WARNING

When the sign of the offset value is reversed, the offset vector of the tool nose is reversed but the imaginary tool nose direction does not change. Therefore, do not reverse the sign of the offset value when starting the machining meeting the imaginary tool nose to the start point.
14.3.10
G53, G28, G30, and G30.1 Commands in Tool–tip Radius Compensation Mode

- When a G53 command is executed in tool–tip radius compensation mode, the tool–tip radius compensation vector is automatically canceled before positioning, that vector being automatically restored by a subsequent move command. The format for restoring the tool–tip radius compensation vector is the FS16 type when bit 2 (CCN) of parameter No. 5003 is set to 0, or the FS15 type when the bit is set to 1.

- When a G28, G30, or G30.1 command is executed in tool–tip radius compensation mode, the tool–tip radius compensation vector is automatically canceled before automatic reference position return, that vector being automatically restored by a subsequent move command. The timing and format for canceling and restoring the tool–tip radius compensation vector are the FS15 type when bit 2 (CCN) of parameter No. 5003 is set to 1, or the FS16 type when the bit is set to 0.

Explanations

- **G53 command in tool–tip radius compensation mode**

 When a G53 command is executed in tool–tip radius compensation mode, a vector having a length equal to the offset is created, at the end of the preceding block, perpendicular to the direction in which the tool moves. When the tool moves to a specified position according to the G53 command, the offset vector is canceled. When the tool moves according to the next command, the offset vector is automatically restored. The format for restoring the tool–tip radius compensation vector is the start–up type when bit 2 (CCN) of parameter No. 5003 is set to 0, or the intersection vector type (FS15 type) when the bit is set to 1.

 - **When bit 2 (CCN) of parameter No. 5003 is set to 0**

 - **When bit 2 (CCN) of parameter No. 5003 is set to 1**
• Incremental G53 command in offset mode

- When bit 2 (CCN) of parameter No. 5003 is set to 0

- When bit 2 (CCN) of parameter No. 5003 is set to 1

• G53 command specifying no movement in offset mode

- When bit 2 (CCN) of parameter No. 5003 is set to 0

- When bit 2 (CCN) of parameter No. 5003 is set to 1
WARNING

1. When a G53 command is executed in tool–tip radius compensation mode when all–axis machine lock is applied, positioning is not performed for those axes to which machine lock is applied and the offset vector is not canceled. When bit 2 (CCN) of parameter No. 5003 is set to 0 or each–axis machine lock is applied, the offset vector is canceled.

Example 1)
When bit 2 (CCN) of parameter No. 5003 is set to 0 and all–axis machine lock is applied

![Diagram 1](image1)

Example 2)
When bit 2 (CCN) of parameter No. 5003 is set to 1 and all–axis machine lock is applied

![Diagram 2](image2)

Example 3)
When bit 2 (CCN) of parameter No. 5003 is set to 1 and each–axis machine lock is applied

![Diagram 3](image3)
WARNING
2 When a compensation axis is specified in a G53 command in tool–tip radius compensation mode, the vectors for other compensation axes are also canceled. This also applies when bit 2 (CCN) of parameter No. 5003 is set to 1. (The FS15 cancels only the vector for the specified axis. Note that the FS15 type cancellation differs from the actual FS15 specification in this point.)

Example:
When bit 2 (CCN) of parameter No. 5003 is set to 0

[FS15 type]
NOTE

1 When an axis not included in the tool–tip radius compensation plane is specified in a G53 command, a vector perpendicular to the direction in which the tool moves is created at the end of the preceding block and the tool does not move. Offset mode is automatically resumed from the next block (in the same way as when two or more blocks specifying no movement are consecutively executed).

Example)
When bit 2 (CCN) of parameter No. 5003 is set to 0

2 When a G53 command is specified as a start–up block, the next block actually becomes the start–up block. When bit 2 (CCN) of parameter No. 5003 is set to 1, however, the next block creates an intersection vector.

Example)
When bit 2 (CCN) of parameter No. 5003 is set to 0

- **G28, G30, G30.1 command in tool–tip radius compensation mode**

When a G28, G30, or G30.1 command is executed in tool–tip radius compensation mode, the operation specified in the command is performed according to the FS15 format if bit 2 (CCN) of parameter No. 5003 is set to 1. An intersection vector is created at the end of the preceding block and a perpendicular vector is created at the intermediate position. The offset vector is canceled when the tool moves from the intermediate position to the reference position. The offset vector is restored as an intersection vector by the next block.
- G28, G30, or G30.1 command in offset mode (with movement to both an intermediate position and reference position performed)

- G28, G30, or G30.1 command in offset mode (with movement to an intermediate position not performed)
- G28, G30, or G30.1 command in offset mode (with movement to a reference position not performed)

When bit 2 (CCN) of parameter No. 5003 is set to 0

![Diagram 1](image1)

When bit 2 (CCN) of parameter No. 5003 is set to 1

![Diagram 2](image2)

- G28, G30, or G30.1 command in offset mode (with no movement)

When bit 2 (CCN) of parameter No. 5003 is set to 0

![Diagram 3](image3)

When bit 2 (CCN) of parameter No. 5003 is set to 1

![Diagram 4](image4)
WARNING

1 When a G28, G30, or G30.1 command is executed when all-axis machine lock is applied, a vector perpendicular to the direction in which the tool moves is created at the intermediate position. In this case, the tool does not move to the reference position and the offset vector is not canceled. When bit 2 (CCN) of parameter No. 5003 is set to 0 or each-axis machine lock is applied, the offset vector is canceled.

Example 1)
When bit 2 (CCN) of parameter No. 5003 is set to 1.

Example 2)
When bit 2 (CCN) of parameter No. 5003 is set to 0 and all-axis machine lock is applied

2 When a compensation axis is specified in a G28, G30, or G30.1 command in tool-tip radius compensation mode, the vectors for other compensation axes are also canceled. This also applies when bit 2 (CCN) of parameter No. 5003 is set to 1. (The FS15 cancels only the vector for the specified axis. Note that the FS15 type cancellation differs from the actual FS15 specification in this point.)
NOTE

1 When an axis not included in the tool–tip radius compensation plane is specified in a G28, G30, or G30.1 command, a vector perpendicular to the direction in which the tool moves is created at the end of the preceding block and the tool does not move. Offset mode is automatically resumed from the next block (in the same way as when two or more blocks specifying no movement are consecutively executed).

Example)
When bit 2 (CCN) of parameter No. 5003 is set to 1.

\[\text{[FS15 type]}\]

\[
\text{G28(30/30.1)Y}_- \\
\text{(G41 G01 X}_-\text{Z}_-) \\
\text{G01 G01 G01 ss} \\
\]

2 When a G28, G30, or G30.1 command is specified as a start–up block, a vector perpendicular to the direction in which the tool moves is created at the intermediate position. The vector is then canceled at the reference position. The next block creates an intersection vector.

Example 1)
When bit 2 (CCN) of parameter No. 5003 is set to 1.

\[\text{[FS15 type]}\]

\[
\text{G01 G01} \\
\text{G42 G28} \\
\text{G01} \\
\text{Reference position or} \text{ floating reference position} \\
\]

Intermediate position
14.4 TOOL COMPENSATION VALUES, NUMBER OF COMPENSATION VALUES, AND ENTERING VALUES FROM THE PROGRAM (G10)

Tool compensation values include tool geometry compensation values and tool wear compensation (Fig. 14.4 (a)). Tool compensation can be specified without differentiating compensation for tool geometry from that for tool wear.

![Diagram showing tool geometry and wear compensation](image)

Fig. 14.4 (a) Difference the tool geometry offset from tool wear offset

Fig. 14.4 (b) Not difference the tool geometry offset from tool wear offset

Tool compensation values can be entered into CNC memory from the MDI panel or from a program. A tool compensation value is selected from the CNC memory when the corresponding code is specified after address T in a program. The value is used for tool offset or tool nose radius compensation. See subsec. II–14.1.2 for details.

14.4.1 Tool Compensation and Number of Tool Compensation

- **Valid range of tool compensation values**

Table 14.4.1 shows the valid input range of tool compensation values.

<table>
<thead>
<tr>
<th>Increment system</th>
<th>Tool compensation value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Metric input (mm)</td>
</tr>
<tr>
<td>IS–B</td>
<td>–999.999 to +999.999 mm</td>
</tr>
<tr>
<td>IS–C</td>
<td>–999.9999 to +999.9999 mm</td>
</tr>
</tbody>
</table>

The maximum tool wear compensation can be changed by setting parameter No.5013.

- **Number of tool compensation**

The memory can hold 16 (standard), 32 (optional), or 64 (optional) tool compensation values.
Offset values can be input by a program using the following command:

\[
\text{G10 P X Y Z R Q ;}
\]
or

\[
\text{G10 P U V W C Q ;}
\]

- **P**: Offset number
- **0**: Command of work coordinate system shift value
- **1–64**: Command of tool wear offset value
- **10000+(1–64)**: Command of tool geometry offset value
- **(1–64)**: Offset number
- **X**: Offset value on X axis (absolute)
- **Y**: Offset value on Y axis (absolute)
- **Z**: Offset value on Z axis (absolute)
- **U**: Offset value on X axis (incremental)
- **V**: Offset value on Y axis (incremental)
- **W**: Offset value on Z axis (incremental)
- **R**: Tool nose radius offset value (absolute)
- **R**: Tool nose radius offset value (incremental)
- **Q**: Imaginary tool nose number

In an absolute command, the values specified in addresses X, Y, Z, and R are set as the offset value corresponding to the offset number specified by address P. In an incremental command, the value specified in addresses U, V, W, and C is added to the current offset value corresponding to the offset number.

NOTE

1. Addresses X, Y, Z, U, V, and W can be specified in the same block.
2. Use of this command in a program allows the tool to advance little by little. This command can also be used input offset values one at a time from a program by specifying this command successively instead of inputting these values one at a time from the MDI unit.
When a tool is moved to the measurement position by execution of a command given to the CNC, the CNC automatically measures the difference between the current coordinate value and the coordinate value of the command measurement position and uses it as the offset value for the tool. When the tool has been already offset, it is moved to the measurement position with that offset value. If the CNC judges that further offset is needed after calculating the difference between the coordinate values of the measurement position and the commanded coordinate values, the current offset value is further offset. Refer to the instruction manuals of the machine tool builder for details.

When moving the tool to a position for measurement, the coordinate system must be set in advance. (The work coordinate system for programming is used in common.)

A movement to a measurement position is performed by specifying as follows in the MDI, or MEM mode:

\[G36 \text{ Xxa} ; \text{ or } G37 \text{ Zza} ; \]

In this case, the measurement position should be \(x_a \) or \(z_a \) (absolute command).

Execution of this command moves the tool at the rapid traverse rate toward the measurement position, lowers the feedrate halfway, then continues to move it until the approach end signal from the measuring instrument is issued. When the tool tip reaches the measurement position, the measuring instrument outputs the measurement position reach signal to the CNC which stops the tool.

The current tool offset value is further offset by the difference between the coordinate value (\(\alpha \) or \(\beta \)) when the tool has reached the measurement position and the value of \(x_a \) or \(z_a \) specified in G36Xx_a or G37Zz_a.

\[\text{Offset value } x = \text{Current offset value } x + (\alpha - x_a) \]
\[\text{Offset value } z = \text{Current offset value } z + (\beta - z_a) \]

\(x_a \): Programmed X–axis measurement point
\(z_a \): Programmed Z–axis measurement point

These offset values can also be altered from the MDI keyboard.
The tool, when moving from the starting position toward the measurement position predicted by x_a or z_a in G36 or G37, is fed at the rapid traverse rate across area A. Then the tool stops at point T ($x_a - \gamma_x$, $z_a - \gamma_z$) and moves at the measurement feedrate set by parameter (No.6241) across areas B, C, and D. If the approach end signal turns on during movement across area B, alarm is generated. If the approach end signal does not turn on before point V, and tool stops at point V and P/S alarm (No.080) is generated.

\[
\begin{align*}
\text{FR} : \text{Rapid traverse rate} \\
\text{FP} : \text{Measurement feedrate (set by parameter(No.6241))}
\end{align*}
\]

\[
\begin{align*}
|x_a - x_s|, |z_a - z_s| \\
U (x_a, z_a)
\end{align*}
\]

Fig. 14.5 (a) Feedrate and alarm

- **G code**

If bit 3 (G36) of parameter No. 3405 has been set to 1, G37.1 and G37.2 are used as the G codes for automatic tool compensation for the X– and Z–axes, respectively.

Examples

```
G50 X760.0 Z1100.0 ; Programming of absolute zero point
                   (Coordinate system setting)
S01 M03 T0101 ; Specifies tool T1, offset number 1, and spindle revolution
```
G36 X200.0 ; Moves to the measurement position
If the tool has reached the measurement position at X198.0 ; since the correct measurement position is 200 mm, the offset value is altered by 198.0–200.0=–2.0mm.
G00 X204.0 ; Refracts a little along the X axis.
G37 Z800.0 ; Moves to the Z–axis measurement position.
If the tool has reached the measurement position at X804.0, the offset value is altered by 804.0–800.0=4.0mm.
T0101 ; Further offsets by the difference.
The new offset value becomes valid when the T code is specified again.

WARNING

1 Measurement speed(Fp), γ, and ε are set as parameters (Fp : No.6241, γ : No.6251, ε : No.6254) by machine tool builder. ε must be positive numbers so that γ>ε.
2 Cancel the tool nose radius compensation before G36, G37.
3 When a manual movement is inserted into a movement at a measurement feedrate, return the tool to the position before the inserted manual movement for restart.
4 When using the optional tool nose radius compensation function, the tool offset amount is determined considering the value of tool nose R. Make sure that tool nose radius value is set correctly.
Example) When the tool nose center coincides with the start point.

![Diagram](https://via.placeholder.com/150)

The tool actually moves from point A to point B, but the tool offset value is determined assuming that the tool moves to point C considering the tool nose radius value.

NOTE

1 When there is no T code command before G36 or G37, P/S alarm No.81 is generated.
2 When a T code is specified in the same block as G36 or G37, P/S alarm No.82 is generated.
Although subprograms are useful for repeating the same operation, the custom macro function also allows use of variables, arithmetic and logic operations, and conditional branches for easy development of general programs such as pocketing and user-defined canned cycles. A machining program can call a custom macro with a simple command, just like a subprogram.

<table>
<thead>
<tr>
<th>Machining program</th>
<th>Custom macro</th>
</tr>
</thead>
<tbody>
<tr>
<td>O0001 ;</td>
<td>O9010 ;</td>
</tr>
<tr>
<td>:</td>
<td>#1=#18/2 ;</td>
</tr>
<tr>
<td>:</td>
<td>G01 X#1 Z#1 F0.3 ;</td>
</tr>
<tr>
<td>:</td>
<td>G02 X#1 Z=#1 R#1 ;</td>
</tr>
<tr>
<td>G65 P9010 R50.0 L2 ;</td>
<td>:</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>M30 ;</td>
<td>M99 ;</td>
</tr>
</tbody>
</table>
15.1 VARIABLES

An ordinary machining program specifies a G code and the travel distance directly with a numeric value; examples are G100 and X100.0. With a custom macro, numeric values can be specified directly or using a variable number. When a variable number is used, the variable value can be changed by a program or using operations on the MDI panel.

```
#1=#2+100 ;
G01 X#1 F0.3 ;
```

Explanation

- Variable representation

When specifying a variable, specify a number sign (#) followed by a variable number. General-purpose programming languages allow a name to be assigned to a variable, but this capability is not available for custom macros.

Example: #1

An expression can be used to specify a variable number. In such a case, the expression must be enclosed in brackets.

Example: #1[#1+#2–12]

- Types of variables

Variables are classified into four types by variable number.

<table>
<thead>
<tr>
<th>Variable number</th>
<th>Type of variable</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>#0</td>
<td>Always null</td>
<td>This variable is always null. No value can be assigned to this variable.</td>
</tr>
<tr>
<td>#1 – #33</td>
<td>Local variables</td>
<td>Local variables can only be used within a macro to hold data such as the results of operations. When the power is turned off, local variables are initialized to null. When a macro is called, arguments are assigned to local variables.</td>
</tr>
<tr>
<td>#100 – #149</td>
<td>Common variables</td>
<td>Common variables can be shared among different macro programs. When the power is turned off, variables #100 to #149 are initialized to null. Variables #500 to #531 hold data even when the power is turned off. As an option, common variables #150 to #199 and #532 to #999 are also available. However, when these values are using, the length of the tape that can be used for storage decreases by 8.5 m.</td>
</tr>
<tr>
<td>#500 – #531</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#1000 –</td>
<td>System variables</td>
<td>System variables are used to read and write a variety of NC data items such as the current position and tool compensation values.</td>
</tr>
<tr>
<td>#999</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE

Common variables #150 to #199 and #532 to #999 are optional.
• Range of variable values

Local and common variables can have value 0 or a value in the following ranges:

- -10^{47} to -10^{-29}
- 0
- $+10^{-29}$ to $+10^{47}$

If the result of calculation turns out to be invalid, an P/S alarm No. 111 is issued.

• Omission of the decimal point

When a variable value is defined in a program, the decimal point can be omitted.

Example:

When #1 = 123; is defined, the actual value of variable #1 is 123.000.

• Referencing variables

To reference the value of a variable in a program, specify a word address followed by the variable number. When an expression is used to specify a variable, enclose the expression in brackets.

Example: G01X[#1+#2]F#3;

A referenced variable value is automatically rounded according to the least input increment of the address.

Example:

When G00X#1; is executed on a 1/1000–mm CNC with 12.3456 assigned to variable #1, the actual command is interpreted as G00X12.346;.

To reverse the sign of a referenced variable value, prefix a minus sign (–) to #.

Example: G00X–#1;

When an undefined variable is referenced, the variable is ignored up to an address word.

Example:

When the value of variable #1 is 0, and the value of variable #2 is null, execution of G00X#1Z#2; results in G00X0;.

• Undefined variable

When the value of a variable is not defined, such a variable is referred to as a "null" variable. Variable #0 is always a null variable. It cannot be written to, but it can be read.

(a) Quotation

When an undefined variable is quoted, the address itself is also ignored.

<table>
<thead>
<tr>
<th>When #1 = < vacant ></th>
<th>When #1 = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>G90 X100 Y#1</td>
<td>G90 X100 Y#1</td>
</tr>
<tr>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>G90 X100</td>
<td>G90 X100 Y0</td>
</tr>
</tbody>
</table>
(b) Operation

< vacant > is the same as 0 except when replaced by *< vacant >*

<table>
<thead>
<tr>
<th>When #1 = < vacant ></th>
<th>When #1 = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>#2 = #1</td>
<td>#2 = #1</td>
</tr>
<tr>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>#2 = < vacant ></td>
<td>#2 = 0</td>
</tr>
</tbody>
</table>

#2 = #1*5	#2 = #1*5
↓	↓
#2 = 0	#2 = 0

#2 = #1+#1	#2 = #1 + #1
↓	↓
#2 = 0	#2 = 0

(c) Conditional expressions

< vacant > differs from 0 only for EQ and NE.

<table>
<thead>
<tr>
<th>When #1 = < vacant ></th>
<th>When #1 = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1 EQ #0</td>
<td>#1 EQ #0</td>
</tr>
<tr>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>Established</td>
<td>Not established</td>
</tr>
</tbody>
</table>

#1 NE 0	#1 NE 0
↓	↓
Established	Not established

#1 GE #0	#1 GE #0
↓	↓
Established	Established

#1 GT 0	#1 GT 0
↓	↓
Not established	Not established
• Displaying variable values

<table>
<thead>
<tr>
<th>VARIABLE NO.</th>
<th>DATA</th>
<th>NO.</th>
<th>DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>123.456</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>0.000</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td></td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>********</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td></td>
<td>112</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td></td>
<td>113</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td></td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>107</td>
<td></td>
<td>115</td>
<td></td>
</tr>
</tbody>
</table>

ACTUAL POSITION (RELATIVE)

| X 0.000 | Y 0.000 | Z 0.000 | B 0.000 |

MEM **** *** *** 18:42:15

Program numbers, sequence numbers, and optional block skip numbers cannot be referenced using variables.

Example:

Variables cannot be used in the following ways:

O#1;
/#2G00X100.0;
N#3Z200.0;

• When the value of a variable is blank, the variable is null.

• The mark ******** indicates an overflow (when the absolute value of a variable is greater than 99999999) or an underflow (when the absolute value of a variable is less than 0.0000001).

Limitations
15. CUSTOM MACRO

15.2 SYSTEM VARIABLES

System variables can be used to read and write internal NC data such as tool compensation values and current position data. Note, however, that some system variables can only be read. System variables are essential for automation and general-purpose program development.

Explanations

- Interface signals

Signals can be exchanged between the programmable machine controller (PMC) and custom macros.

Table 15.2 (a) System variables for interface signals

<table>
<thead>
<tr>
<th>Variable number</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1000–#1015, #1032</td>
<td>A 16-bit signal can be sent from the PMC to a custom macro. Variables #1000 to #1015 are used to read a signal bit by bit. Variable #1032 is used to read all 16 bits of a signal at one time.</td>
</tr>
<tr>
<td>#1100–#1115, #1132</td>
<td>A 16-bit signal can be sent from a custom macro to the PMC. Variables #1100 to #1115 are used to write a signal bit by bit. Variable #1132 is used to write all 16 bits of a signal at one time.</td>
</tr>
<tr>
<td>#1133</td>
<td>Variable #1133 is used to write all 32 bits of a signal at one time from a custom macro to the PMC. Note, that values from −99999999 to +99999999 can be used for #1133.</td>
</tr>
</tbody>
</table>

For detailed information, refer to the connection manual (B–63523EN–1).

- Tool compensation values

When the system does not differentiate tool geometry compensation from tool wear compensation, use variable numbers for wear compensation.

Table 15.2 (b) System variables for tool compensation memory C

<table>
<thead>
<tr>
<th>Compensation number</th>
<th>X axis compensation value</th>
<th>Z axis compensation value</th>
<th>Tool nose radius compensation value</th>
<th>Imaginary tool nose position T</th>
<th>Y axis compensation value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wear</td>
<td>Geome-try</td>
<td>Wear</td>
<td>Geome-try</td>
<td>Wear</td>
</tr>
<tr>
<td>1</td>
<td>#2001</td>
<td>#2701</td>
<td>#2101</td>
<td>#2801</td>
<td>#2201</td>
</tr>
<tr>
<td>49</td>
<td></td>
<td>#2749</td>
<td>#2849</td>
<td>#2964</td>
<td>#2364</td>
</tr>
<tr>
<td>64</td>
<td>#2064</td>
<td>#2164</td>
<td></td>
<td>#2264</td>
<td>#2364</td>
</tr>
</tbody>
</table>

Table 15.2 (c) System variables for 99 tool compensation values

<table>
<thead>
<tr>
<th>Compensation number</th>
<th>X axis compensation value</th>
<th>Z axis compensation value</th>
<th>Tool nose radius compensation value</th>
<th>Imaginary tool nose position T</th>
<th>Y axis compensation value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wear</td>
<td>Geome-try</td>
<td>Wear</td>
<td>Geome-try</td>
<td>Wear</td>
</tr>
<tr>
<td>1</td>
<td>#10001</td>
<td>#15001</td>
<td>#11001</td>
<td>#12001</td>
<td>#12001</td>
</tr>
<tr>
<td>64</td>
<td>#10064</td>
<td>#15064</td>
<td>#11064</td>
<td>#12064</td>
<td>#12064</td>
</tr>
</tbody>
</table>
• Workpiece coordinate system shift amount

A workpiece coordinate system shift amount can be read. The amount can also be changed by entering a value.

<table>
<thead>
<tr>
<th>Controlled axis</th>
<th>Workpiece coordinate system shift amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>X axis</td>
<td>#2501</td>
</tr>
<tr>
<td>Z axis</td>
<td>#2601</td>
</tr>
</tbody>
</table>

• Macro alarms

Table 15.2 (d) System variable for macro alarms

<table>
<thead>
<tr>
<th>Variable number</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>#3000</td>
<td>When a value from 0 to 200 is assigned to variable #3000, the CNC stops with an alarm. After an expression, an alarm message not longer than 26 characters can be described. The CRT screen displays alarm numbers by adding 3000 to the value in variable #3000 along with an alarm message.</td>
</tr>
</tbody>
</table>

Example:

#3000=1(TOOL NOT FOUND);

→ The alarm screen displays ”3001 TOOL NOT FOUND.”

• Time information

Time information can be read and written.

Table 15.2 (e) System variables for time information

<table>
<thead>
<tr>
<th>Variable number</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>#3001</td>
<td>This variable functions as a timer that counts in 1–millisecond increments at all times. When the power is turned on, the value of this variable is reset to 0. When 2147483648 milliseconds is reached, the value of this timer returns to 0.</td>
</tr>
<tr>
<td>#3002</td>
<td>This variable functions as a timer that counts in 1–hour increments when the cycle start lamp is on. This timer preserves its value even when the power is turned off. When 9544.371767 hours is reached, the value of this timer returns to 0.</td>
</tr>
<tr>
<td>#3011</td>
<td>This variable can be used to read the current date (year/month/day). Year/month/day information is converted to an apparent decimal number. For example, March 28, 1993 is represented as 19930328.</td>
</tr>
<tr>
<td>#3012</td>
<td>This variable can be used to read the current time (hours/minutes/seconds). Hours/minutes/seconds information is converted to an apparent decimal number. For example, 34 minutes and 56 seconds after 3 p.m. is represented as 153456.</td>
</tr>
</tbody>
</table>
The control state of automatic operation can be changed.

Table 15.2 (f) System variable (#3003) for automatic operation control

<table>
<thead>
<tr>
<th>#3003</th>
<th>Single block</th>
<th>Completion of an auxiliary function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Enabled</td>
<td>To be awaited</td>
</tr>
<tr>
<td>1</td>
<td>Disabled</td>
<td>To be awaited</td>
</tr>
<tr>
<td>2</td>
<td>Enabled</td>
<td>Not to be awaited</td>
</tr>
<tr>
<td>3</td>
<td>Disabled</td>
<td>Not to be awaited</td>
</tr>
</tbody>
</table>

- When the power is turned on, the value of this variable is 0.
- When single block stop is disabled, single block stop operation is not performed even if the single block switch is set to ON.
- When a wait for the completion of auxiliary functions (M, S, and T functions) is not specified, program execution proceeds to the next block before completion of auxiliary functions. Also, distribution completion signal DEN is not output.

Table 15.2 (g) System variable (#3004) for automatic operation control

<table>
<thead>
<tr>
<th>#3004</th>
<th>Feed hold</th>
<th>Feedrate Override</th>
<th>Exact stop</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Enabled</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>1</td>
<td>Disabled</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>2</td>
<td>Enabled</td>
<td>Disabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>3</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>4</td>
<td>Enabled</td>
<td>Enabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>5</td>
<td>Disabled</td>
<td>Enabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>6</td>
<td>Enabled</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>7</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

- When the power is turned on, the value of this variable is 0.
- When feed hold is disabled:
 1. When the feed hold button is held down, the machine stops in the single block stop mode. However, single block stop operation is not performed when the single block mode is disabled with variable #3003.
 2. When the feed hold button is pressed then released, the feed hold lamp comes on, but the machine does not stop; program execution continues and the machine stops at the first block where feed hold is enabled.
- When feedrate override is disabled, an override of 100% is always applied regardless of the setting of the feedrate override switch on the machine operator’s panel.
- When exact stop check is disabled, no exact stop check (position check) is made even in blocks including those which do not perform cutting.
• Settings

Settings can be read and written. Binary values are converted to decimals.

<table>
<thead>
<tr>
<th>#3005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting</td>
</tr>
<tr>
<td>#15</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>#7</td>
</tr>
<tr>
<td>SEQ</td>
</tr>
</tbody>
</table>

#9 (FCV) : Whether to use the FS15 tape format conversion capability
#5 (SEQ) : Whether to automatically insert sequence numbers
#2 (INI) : Millimeter input or inch input
#1 (ISO) : Whether to use EIA or ISO as the output code
#0 (TVC) : Whether to make a TV check

• Stop with a message

Execution of the program can be stopped, and then a message can be displayed.

<table>
<thead>
<tr>
<th>Variable number</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>#3006</td>
<td>When “#3006=1 (MESSAGE);” is commanded in the macro, the program executes blocks up to the immediately previous one and then stops. When a message of up to 26 characters, which is enclosed by a control—in character (“”) and control—out character (“”), is programmed in the same block, the message is displayed on the external operator message screen.</td>
</tr>
</tbody>
</table>

• Mirror image

The mirror—image status for each axis set using an external switch or setting operation can be read through the output signal (mirror—image check signal). The mirror—image status present at that time can be checked. (See Section 4.7 in III.)
The value obtained in binary is converted into decimal notation.

<table>
<thead>
<tr>
<th>#3007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting</td>
</tr>
<tr>
<td>#7</td>
</tr>
<tr>
<td>4th axis</td>
</tr>
</tbody>
</table>

For each bit,

\[
\begin{align*}
0 & \text{ (mirror—image function is disabled)} \\
1 & \text{ (mirror—image function is enabled)}
\end{align*}
\]

is indicated.

Example : If #3007 is 3, the mirror—image function is enabled for the first and second axes.

- When the mirror—image function is set for a certain axis by both the mirror—image signal and setting, the signal value and setting value are ORed and then output.
- When mirror—image signals for axes other than the controlled axes are turned on, they are still read into system variable #3007.
- System variable #3007 is a write—protected system variable. If an attempt is made to write data in the variable, P/S 116 alarm ”WRITE PROTECTED VARIABLE” is issued.
• Number of machined parts

The number (target number) of parts required and the number (completion number) of machined parts can be read and written.

Table 15.2 (h) System variables for the number of parts required and the number of machined parts

<table>
<thead>
<tr>
<th>Variable number</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>#3901</td>
<td>Number of machined parts (completion number)</td>
</tr>
<tr>
<td>#3902</td>
<td>Number of required parts (target number)</td>
</tr>
</tbody>
</table>

NOTE

Do not substitute a negative value.

• Modal information

Modal information specified in blocks up to the immediately preceding block can be read.

Table 15.2 (i) System variables for modal information

<table>
<thead>
<tr>
<th>Variable number</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>#4001</td>
<td>G00, G01, G02, G03, G33, G34 (Group 01)</td>
</tr>
<tr>
<td>#4002</td>
<td>G96, G97 (Group 02)</td>
</tr>
<tr>
<td>#4003</td>
<td>(Group 03)</td>
</tr>
<tr>
<td>#4004</td>
<td>G68, G69 (Group 04)</td>
</tr>
<tr>
<td>#4005</td>
<td>G98, G99 (Group 05)</td>
</tr>
<tr>
<td>#4006</td>
<td>G20, G21 (Group 06)</td>
</tr>
<tr>
<td>#4007</td>
<td>G40, G41, G42 (Group 07)</td>
</tr>
<tr>
<td>#4008</td>
<td>G25, G26 (Group 08)</td>
</tr>
<tr>
<td>#4009</td>
<td>G22, G23 (Group 09)</td>
</tr>
<tr>
<td>#4010</td>
<td>G80 – G89 (Group 10)</td>
</tr>
<tr>
<td>#4011</td>
<td>(Group 11)</td>
</tr>
<tr>
<td>#4012</td>
<td>G66, G67 (Group 12)</td>
</tr>
<tr>
<td>#4014</td>
<td>G54–G59 (Group 14)</td>
</tr>
<tr>
<td>#4015</td>
<td>(Group 15)</td>
</tr>
<tr>
<td>#4016</td>
<td>G17–G19 (Group 16)</td>
</tr>
<tr>
<td>#4022</td>
<td>(Group 22)</td>
</tr>
<tr>
<td>#4109</td>
<td>F code</td>
</tr>
<tr>
<td>#4113</td>
<td>M code</td>
</tr>
<tr>
<td>#4114</td>
<td>Sequence number</td>
</tr>
<tr>
<td>#4115</td>
<td>Program number</td>
</tr>
<tr>
<td>#4119</td>
<td>S code</td>
</tr>
<tr>
<td>#4120</td>
<td>T code</td>
</tr>
</tbody>
</table>

Example:

When \#1=#4001; is executed, the resulting value in \#1 is 0, 1, 2, 3, or 33.

When a modal information reading system variable corresponding to a G code group which cannot be used is specified, a P/S alarm is issued.
Position information cannot be written but can be read.

Table 15.2 (j) System variables for position information

<table>
<thead>
<tr>
<th>Variable number</th>
<th>Position information</th>
<th>Coordinate system</th>
<th>Tool compensation value</th>
<th>Read operation during movement</th>
</tr>
</thead>
<tbody>
<tr>
<td>#5001–#5004</td>
<td>Block end point</td>
<td>Workpiece coordinate system</td>
<td>Not included</td>
<td>Enabled</td>
</tr>
<tr>
<td>#5021–#5024</td>
<td>Current position</td>
<td>Machine coordinate system</td>
<td>Included</td>
<td>Disabled</td>
</tr>
<tr>
<td>#5041–#5044</td>
<td>Current position</td>
<td>Workpiece coordinate system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#5061–#5064</td>
<td>Skip signal position</td>
<td></td>
<td>Included</td>
<td></td>
</tr>
<tr>
<td>#5081, #5082</td>
<td>Tool offset value</td>
<td></td>
<td></td>
<td>Disabled</td>
</tr>
<tr>
<td>#5101–#5104</td>
<td>Deviated servo position</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- The first digit (from 1 to 8) represents an axis number.
- The tool offset value currently used for execution rather than the immediately preceding tool offset value is held in variables #5081 to #5088.
- The tool position where the skip signal is turned on in a G31 (skip function) block is held in variables #5061 to #5064. When the skip signal is not turned on in a G31 block, the end point of the specified block is held in these variables.
- When read during movement is “disabled,” this means that expected values cannot be read due to the buffering (preread) function.
Workpiece zero point offset values can be read and written.

Table 15.2(k) System variables for workpiece zero point offset values

<table>
<thead>
<tr>
<th>Variable number</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>#5201</td>
<td>First-axis external workpiece zero point offset value</td>
</tr>
<tr>
<td>#5204</td>
<td>Fourth-axis external workpiece zero point offset value</td>
</tr>
<tr>
<td>#5221</td>
<td>First-axis G54 workpiece zero point offset value</td>
</tr>
<tr>
<td>#5224</td>
<td>Fourth-axis G54 workpiece zero point offset value</td>
</tr>
<tr>
<td>#5241</td>
<td>First-axis G55 workpiece zero point offset value</td>
</tr>
<tr>
<td>#5244</td>
<td>Fourth-axis G55 workpiece zero point offset value</td>
</tr>
<tr>
<td>#5261</td>
<td>First-axis G56 workpiece zero point offset value</td>
</tr>
<tr>
<td>#5264</td>
<td>Fourth-axis G56 workpiece zero point offset value</td>
</tr>
<tr>
<td>#5281</td>
<td>First-axis G57 workpiece zero point offset value</td>
</tr>
<tr>
<td>#5284</td>
<td>Fourth-axis G57 workpiece zero point offset value</td>
</tr>
<tr>
<td>#5301</td>
<td>First-axis G58 workpiece zero point offset value</td>
</tr>
<tr>
<td>#5304</td>
<td>Fourth-axis G58 workpiece zero point offset value</td>
</tr>
<tr>
<td>#5321</td>
<td>First-axis G59 workpiece zero point offset value</td>
</tr>
<tr>
<td>#5324</td>
<td>Fourth-axis G59 workpiece zero point offset value</td>
</tr>
</tbody>
</table>

NOTE

To use variables #5201 to #5324, the workpiece coordinate system option is necessary.
15.3
ARITHMETIC AND LOGIC OPERATION

The operations listed in Table 15.3(a) can be performed on variables. The expression to the right of the operator can contain constants and/or variables combined by a function or operator. Variables #j and #K in an expression can be replaced with a constant. Variables on the left can also be replaced with an expression.

Table 15.3 (a) Arithmetic and logic operation

<table>
<thead>
<tr>
<th>Function</th>
<th>Format</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>#i=#j</td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td>#i=#j+#k;</td>
<td></td>
</tr>
<tr>
<td>Difference</td>
<td>#i=#j–#k;</td>
<td></td>
</tr>
<tr>
<td>Product</td>
<td>#i=#j*#k;</td>
<td></td>
</tr>
<tr>
<td>Quotient</td>
<td>#i=#j/#k;</td>
<td></td>
</tr>
<tr>
<td>Sine</td>
<td>#i=SIN[#j];</td>
<td>An angle is specified in degrees. 90 degrees and 30 minutes is represented as 90.5 degrees.</td>
</tr>
<tr>
<td>Arc sine</td>
<td>#i=ASIN[#j];</td>
<td></td>
</tr>
<tr>
<td>Cosine</td>
<td>#i=COS[#j];</td>
<td></td>
</tr>
<tr>
<td>Arc cosine</td>
<td>#i=ACOS[#j];</td>
<td></td>
</tr>
<tr>
<td>Tangent</td>
<td>#i=TAN[#j];</td>
<td></td>
</tr>
<tr>
<td>Arctangent</td>
<td>#i=ATAN[#j]/[#k];</td>
<td></td>
</tr>
<tr>
<td>Square root</td>
<td>#i=SQRT[#j];</td>
<td></td>
</tr>
<tr>
<td>Absolute value</td>
<td>#i=ABS[#j];</td>
<td></td>
</tr>
<tr>
<td>Rounding off</td>
<td>#i=ROUND[#j];</td>
<td></td>
</tr>
<tr>
<td>Rounding down</td>
<td>#i=FIX[#j];</td>
<td></td>
</tr>
<tr>
<td>Rounding up</td>
<td>#i=FUP[#j];</td>
<td></td>
</tr>
<tr>
<td>Natural logarithm</td>
<td>#i=LN[#j]</td>
<td></td>
</tr>
<tr>
<td>Exponential function</td>
<td>#i=EXP[#j];</td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td>#i=#j OR #k;</td>
<td>A logical operation is performed on binary numbers bit by bit.</td>
</tr>
<tr>
<td>XOR</td>
<td>#i=#j XOR #k;</td>
<td></td>
</tr>
<tr>
<td>AND</td>
<td>#i=#j AND #k;</td>
<td></td>
</tr>
<tr>
<td>Conversion from BCD to BIN</td>
<td>#i=BIN[#j];</td>
<td>Used for signal exchange to and from the PMC</td>
</tr>
<tr>
<td>Conversion from BIN to BCD</td>
<td>#i=BCD[#j];</td>
<td></td>
</tr>
</tbody>
</table>

Explanations

- **Angle units**

The units of angles used with the SIN, COS, TAN, ASIN, ACOS and ATAN functions are degrees. For example, 90 degrees and 30 minutes is represented as 90.5 degrees.

- **ARCSIN #i = ASIN[#j]**

 - The solution ranges are as indicated below:
 When the NAT bit (bit 0 of parameter 6004) is set to 0: 270° to 90°
 When the NAT bit (bit 0 of parameter 6004) is set to 1: −90° to 90°

 - When #j is beyond the range of –1 to 1, P/S alarm No. 111 is issued.

 - A constant can be used instead of the #j variable.
The solution ranges from 180° to 0°. When #j is beyond the range of −1 to 1, P/S alarm No. 111 is issued. A constant can be used instead of the #j variable.

Specify the lengths of two sides, separated by a slash (/). The solution ranges are as follows:

When the NAT bit (bit 0 of parameter 6004) is set to 0: 0° to 360°

Example:
When #1 = ATAN[–1]/[–1]; is specified, #1 is 225.0
When the NAT bit (bit 0 of parameter 6004) is set to 1: –180° to 180°

Example:
When #1 = ATAN[–1]/[–1]; is specified, #1 is –135.0.

A constant can be used instead of the #j variable.

Note that the relative error may become 10^{-8} or greater.

When the antilogarithm (#j) is zero or smaller, P/S alarm No. 111 is issued.

A constant can be used instead of the #j variable.

Note that the relative error may become 10^{-8} or greater.

When the result of the operation exceeds 3.65×10^{47} (#j is about 110), an overflow occurs and P/S alarm No. 111 is issued.

A constant can be used instead of the #j variable.

When the ROUND function is included in an arithmetic or logic operation command, IF statement, or WHILE statement, the ROUND function rounds off at the first decimal place.

Example:
When #1=ROUND[#2]; is executed where #2 holds 1.2345, the value of variable #1 is 1.0.

When the ROUND function is used in NC statement addresses, the ROUND function rounds off the specified value according to the least input increment of the address.

Example:
Creation of a drilling program that cuts according to the values of variables #1 and #2, then returns to the original position
Suppose that the increment system is 1/1000 mm, variable #1 holds 1.2345, and variable #2 holds 2.3456. Then,
G00 G91 X=#1; Moves 1.235 mm.
G01 X=#2 F300; Moves 2.346 mm.
G00 X[#1+#2];
Since 1.2345 + 2.3456 = 3.5801, the travel distance is 3.580, which does not return the tool to the original position. This difference comes from whether addition is performed before or after rounding off. G00X=[ROUND[#1]+ROUND[#2]] must be specified to return the tool to the original position.
• Rounding up and down to an integer

With CNC, when the absolute value of the integer produced by an operation on a number is greater than the absolute value of the original number, such an operation is referred to as rounding up to an integer. Conversely, when the absolute value of the integer produced by an operation on a number is less than the absolute value of the original number, such an operation is referred to as rounding down to an integer. Be particularly careful when handling negative numbers.

Example:
Suppose that #1=1.2 and #2=−1.2.
When #3=FUP[#1] is executed, 2.0 is assigned to #3.
When #3=FIX[#1] is executed, 1.0 is assigned to #3.
When #3=FUP[#2] is executed, −2.0 is assigned to #3.
When #3=FIX[#2] is executed, −1.0 is assigned to #3.

• Abbreviations of arithmetic and logic operation commands

When a function is specified in a program, the first two characters of the function name can be used to specify the function. (See III 9.7)

Example:
ROUND → RO
FIX → FI

• Priority of operations

(1) Functions
(2) Operations such as multiplication and division (*, /, AND, MOD)
(3) Operations such as addition and subtraction (+, −, OR, XOR)

Example) #1=#2+#3*SIN[#4];
(1) (2) (3)
(1), (2), and (3) indicate the order of operations.

• Bracket nesting

Brackets are used to change the order of operations. Brackets can be used to a depth of five levels including the brackets used to enclose a function. When a depth of five levels is exceeded, alarm No. 118 occurs.

Example) #1=SIN [[#2+#3] *#4 +#5] *#6 ;
(1) (2) (3) (4) (5)
(1) to (5) indicate the order of operations.

• Limitations

• Brackets

Brackets ([,]) are used to enclose an expression. Note that parentheses are used for comments.
Error may occur when operations are performed.

Table 15.3 (b) Errors involved in operations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Average error</th>
<th>Maximum error</th>
<th>Type of error</th>
</tr>
</thead>
<tbody>
<tr>
<td>a = b*c</td>
<td>1.55×10⁻¹⁰</td>
<td>4.66×10⁻¹⁰</td>
<td>Relative error(*1)</td>
</tr>
<tr>
<td>a = b / c</td>
<td>4.66×10⁻¹⁰</td>
<td>1.88×10⁻⁹</td>
<td></td>
</tr>
<tr>
<td>a = \sqrt{b}</td>
<td>1.24×10⁻⁹</td>
<td>3.73×10⁻⁹</td>
<td></td>
</tr>
<tr>
<td>a = b + c</td>
<td>2.33×10⁻¹⁰</td>
<td>5.32×10⁻¹⁰</td>
<td>Min</td>
</tr>
<tr>
<td>a = b – c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a = SIN [b]</td>
<td>5.0×10⁻⁹</td>
<td>1.0×10⁻⁸</td>
<td>Absolute error(*3)</td>
</tr>
<tr>
<td>a = COS [b]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a = ATAN [b] / [c]</td>
<td>1.8×10⁻⁶</td>
<td>3.6×10⁻⁶</td>
<td>(\varepsilon)</td>
</tr>
</tbody>
</table>

NOTE
1. The relative error depends on the result of the operation.
2. Smaller of the two types of errors is used.
3. The absolute error is constant, regardless of the result of the operation.
4. Function TAN performs SIN/COS.

- The precision of variable values is about 8 decimal digits. When very large numbers are handled in an addition or subtraction, the expected results may not be obtained.

Example:
When an attempt is made to assign the following values to variables #1 and #2:

- #1=9876543210123.456
- #2=9876543277777.777

the values of the variables become:

- #1=9876543200000.000
- #2=9876543300000.000

In this case, when #3=#2–#1; is calculated, #3=100000.000 results. (The actual result of this calculation is slightly different because it is performed in binary.)

- Also be aware of errors that can result from conditional expressions using EQ, NE, GE, GT, LE, and LT.

Example:
IF[#1 EQ #2] is effected by errors in both #1 and #2, possibly resulting in an incorrect decision. Therefore, instead find the difference between the two variables with IF[ABS[#1–#2]LT0.001]. Then, assume that the values of the two variables are equal when the difference does not exceed an allowable limit (0.001 in this case).
• Also, be careful when rounding down a value.

Example:
When \(#2 = #1 \times 1000 \); is calculated where \(#1 = 0.002 \), the resulting value of variable \(#2 \) is not exactly 2 but 1.99999997. Here, when \(#3 = \text{FIX}[#2] \); is specified, the resulting value of variable \(#1 \) is not 2.0 but 1.0. In this case, round down the value after correcting the error so that the result is greater than the expected number, or round it off as follows:
\[
#3 = \text{FIX}[#2 + 0.001] \\
#3 = \text{ROUND}[#2]
\]

• **Divisor**

When a divisor of zero is specified in a division or \(\text{TAN}[90] \), alarm No. 112 occurs.
15.4 MACRO STATEMENTS AND NC STATEMENTS

The following blocks are referred to as macro statements:

- Blocks containing an arithmetic or logic operation (=)
- Blocks containing a control statement (such as GOTO, DO, END)
- Blocks containing a macro call command (such as macro calls by G65, G66, G67, or other G codes, or by M codes)

Any block other than a macro statement is referred to as an NC statement.

Explanations

- Differences from NC statements
 - Even when single block mode is on, the machine does not stop. Note, however, that the machine stops in the single block mode when bit 5 (SBM) of parameter 6000 is 1.
 - Macro blocks are not regarded as blocks that involve no movement in the tool nose radius compensation mode (see Section II–15.7).

- NC statements that have the same property as macro statements
 - If a block contains a subprogram call command (M98, a subprogram call using an M code, or a subprogram call using a T code) and does not contain any command address other than O, N, P, or L, that block is equivalent to a macro statement.
 - If a block contains M99 and does not contain any command address other than O, N, P, or L, that block is equivalent to a macro statement.
In a program, the flow of control can be changed using the GOTO statement and IF statement. Three types of branch and repetition operations are used:

- Branch and repetition GOTO statement (unconditional branch)
- IF statement (conditional branch: if ..., then...)
- WHILE statement (repetition while ...)

A branch to sequence number n occurs. When a sequence number outside of the range 1 to 99999 is specified, P/S alarm No. 128 occurs. A sequence number can also be specified using an expression.

\[
\text{GOTO } n ; \quad n: \text{ Sequence number (1 to 9999)}
\]

Example:
- GOTO1;
- GOTO#10;
15.5.2 Conditional Branch (IF Statement)

Specify a conditional expression after IF. IF [<conditional expression>] GOTO n If the specified conditional expression is satisfied, a branch to sequence number n occurs. If the specified condition is not satisfied, the next block is executed.

IF [#1 GT 10] GOTO 2 ;
N2 G00 G91 X10.0 ;

If the value of variable #1 is greater than 10, a branch to sequence number N2 occurs.

Processing

IF [<conditional expression>] THEN

If the specified conditional expression is satisfied, a predetermined macro statement is executed. Only a single macro statement is executed.

IF [#1 EQ #2] THEN #3=0;

Explanations

• Conditional expression

A conditional expression must include an operator inserted between two variables or between a variable and constant, and must be enclosed in brackets ([,]). An expression can be used instead of a variable.

• Operators

Operators each consist of two letters and are used to compare two values to determine whether they are equal or one value is smaller or greater than the other value. Note that the inequality sign cannot be used.

Table 15.5.2 Operators

<table>
<thead>
<tr>
<th>Operator</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQ</td>
<td>Equal to(=)</td>
</tr>
<tr>
<td>NE</td>
<td>Not equal to(≠)</td>
</tr>
<tr>
<td>GT</td>
<td>Greater than(></td>
</tr>
<tr>
<td>GE</td>
<td>Greater than or equal to(≥)</td>
</tr>
<tr>
<td>LT</td>
<td>Less than(<)</td>
</tr>
<tr>
<td>LE</td>
<td>Less than or equal to(≤)</td>
</tr>
</tbody>
</table>

Sample program

The sample program below finds the total of numbers 1 to 10.

O9500;
#1=0;Initial value of the variable to hold the sum
#2=1;Initial value of the variable as an addend
N1 IF[#2 GT 10] GOTO 2; Branch to N2 when the addend is greater than 10
#1=#1+#2; Calculation to find the sum
#2=#2+1; Next addend
GOTO 1; Branch to N1
N2 M30; End of program
15.5.3 Repetition (WHILE Statement)

Specify a conditional expression after WHILE. While the specified condition is satisfied, the program from DO to END is executed. If the specified condition is not satisfied, program execution proceeds to the block after END.

Explanations

While the specified condition is satisfied, the program from DO to END after WHILE is executed. If the specified condition is not satisfied, program execution proceeds to the block after END. The same format as for the IF statement applies. A number after DO and a number after END are identification numbers for specifying the range of execution. The numbers 1, 2, and 3 can be used. When a number other than 1, 2, and 3 is used, P/S alarm No. 126 occurs.
15. CUSTOM MACRO

- **Nesting**

 The identification numbers (1 to 3) in a DO–END loop can be used as many times as desired. Note, however, when a program includes crossing repetition loops (overlapped DO ranges), P/S alarm No. 124 occurs.

1. The identification numbers (1 to 3) can be used as many times as required.

   ```
   WHILE [... ] DO 1;
   Processing
   END 1;
   WHILE [... ] DO 1;
   Processing
   END 1;
   WHILE [... ] DO 1;
   Processing
   END 1;
   WHILE [... ] DO 1;
   Processing
   WHILE [... ] DO 2;
   Processing
   END 1;
   WHILE [... ] DO 2;
   Processing
   END 2;
   END 1;
   WHILE [... ] DO 1;
   Processing
   WHILE [... ] DO 2;
   Processing
   END 2;
   END 1;
   ```

2. DO ranges cannot overlap.

3. DO loops can be nested to a maximum depth of three levels.

   ```
   WHILE [... ] DO 1;
   WHILE [... ] DO 2;
   WHILE [... ] DO 3;
   Processing
   END 3;
   END 2;
   END 1;
   WHILE [... ] DO 1;
   WHILE [... ] DO 2;
   IF [... ] GOTO n;
   END 1;
   Nn
   ```

4. Control can be transferred to the outside of a loop.

5. Branches cannot be made to a location within a loop.

   ```
   IF [... ] GOTO n;
   WHILE [... ] DO 1;
   Nn ... ;
   END 1;
   ```

- **Limitations**

 - **Infinite loops**

 When DO m is specified without specifying the WHILE statement, an infinite loop ranging from DO to END is produced.

 - **Processing time**

 When a branch to the sequence number specified in a GOTO statement occurs, the sequence number is searched for. For this reason, processing in the reverse direction takes a longer time than processing in the forward direction. Using the WHILE statement for repetition reduces processing time.

 - **Undefined variable**

 In a conditional expression that uses EQ or NE, a null value and zero have different effects. In other types of conditional expressions, a null value is regarded as zero.
The sample program below finds the total of numbers 1 to 10.

```
O0001;
#1=0;
#2=1;
WHILE[#2 LE 10]DO 1;
#1=#1+#2;
#2=#2+1;
END 1;
M30;
```
15.6 MACRO CALL

A macro program can be called using the following methods:

<table>
<thead>
<tr>
<th>Macro call</th>
<th>Simple call (G65)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>modal call (G66, G67)</td>
</tr>
<tr>
<td></td>
<td>Macro call with G code</td>
</tr>
<tr>
<td></td>
<td>Macro call with M code</td>
</tr>
<tr>
<td></td>
<td>Subprogram call with M code</td>
</tr>
<tr>
<td></td>
<td>Subprogram call with T code</td>
</tr>
</tbody>
</table>

Restrictions

- **Differences between macro calls and subprogram calls**

Macro call (G65) differs from subprogram call (M98) as described below.

- With G65, an argument (data passed to a macro) can be specified. M98 does not have this capability.

- When an M98 block contains another NC command (for example, G01 X100.0 M98Pp), the subprogram is called after the command is executed. On the other hand, G65 unconditionally calls a macro.

- When an M98 block contains another NC command (for example, G01 X100.0 M98Pp), the machine stops in the single block mode. On the other hand, G65 does not stop the machine.

- With G65, the level of local variables changes. With M98, the level of local variables does not change.
15.6.1 Simple Call (G65)

When G65 is specified, the custom macro specified at address P is called. Data (argument) can be passed to the custom macro program.

Syntax:

\[
\text{G65 P_ L_ <argument–specification> ;}
\]

- \(P_\) : Number of the program to call
- \(L_\) : Repetition count (1 by default)
- Argument : Data passed to the macro

Example:

\[
\begin{align*}
\text{O0001 ;} & \\
\text{G65 P9010 L2 A1.0 B2.0 ;} & \\
\text{M30 ;} \\
\end{align*}
\]

Explanations

- **Call**
 - After G65, specify at address P the program number of the custom macro to call.
 - When a number of repetitions is required, specify a number from 1 to 9999 after address L. When L is omitted, 1 is assumed.
 - By using argument specification, values are assigned to corresponding local variables.

- **Argument specification**
 - Two types of argument specification are available. Argument specification I uses letters other than G, L, O, N, and P once each. Argument specification II uses A, B, and C once each and also uses I, J, and K up to ten times. The type of argument specification is determined automatically according to the letters used.

Argument specification I

<table>
<thead>
<tr>
<th>Address</th>
<th>Variable number</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>#1</td>
</tr>
<tr>
<td>B</td>
<td>#2</td>
</tr>
<tr>
<td>C</td>
<td>#3</td>
</tr>
<tr>
<td>D</td>
<td>#7</td>
</tr>
<tr>
<td>E</td>
<td>#8</td>
</tr>
<tr>
<td>F</td>
<td>#9</td>
</tr>
<tr>
<td>H</td>
<td>#11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address</th>
<th>Variable number</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>#4</td>
</tr>
<tr>
<td>J</td>
<td>#5</td>
</tr>
<tr>
<td>K</td>
<td>#6</td>
</tr>
<tr>
<td>M</td>
<td>#13</td>
</tr>
<tr>
<td>N</td>
<td>#17</td>
</tr>
<tr>
<td>R</td>
<td>#18</td>
</tr>
<tr>
<td>S</td>
<td>#19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address</th>
<th>Variable number</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>#20</td>
</tr>
<tr>
<td>U</td>
<td>#21</td>
</tr>
<tr>
<td>V</td>
<td>#22</td>
</tr>
<tr>
<td>W</td>
<td>#23</td>
</tr>
<tr>
<td>X</td>
<td>#24</td>
</tr>
<tr>
<td>Y</td>
<td>#25</td>
</tr>
<tr>
<td>Z</td>
<td>#26</td>
</tr>
</tbody>
</table>

- Addresses G, L, N, O, and P cannot be used in arguments.
- Addresses that need not be specified can be omitted. Local variables corresponding to an omitted address are set to null.
- Addresses do not need to be specified alphabetically. They conform to word address format. I, J, and K need to be specified alphabetically, however.

Example

- B_A_D_ … J_K_ Correct
- B_A_D_ … J_I_ Incorrect
Argument specification II
Argument specification II uses A, B, and C once each and uses I, J, and K up to ten times. Argument specification II is used to pass values such as three-dimensional coordinates as arguments.

<table>
<thead>
<tr>
<th>Address</th>
<th>Variable number</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>#1</td>
</tr>
<tr>
<td>B</td>
<td>#2</td>
</tr>
<tr>
<td>C</td>
<td>#3</td>
</tr>
<tr>
<td>I_1</td>
<td>#4</td>
</tr>
<tr>
<td>J_1</td>
<td>#5</td>
</tr>
<tr>
<td>K_1</td>
<td>#6</td>
</tr>
<tr>
<td>I_2</td>
<td>#7</td>
</tr>
<tr>
<td>J_2</td>
<td>#8</td>
</tr>
<tr>
<td>K_2</td>
<td>#9</td>
</tr>
<tr>
<td>I_3</td>
<td>#10</td>
</tr>
<tr>
<td>J_3</td>
<td>#11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address</th>
<th>Variable number</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_3</td>
<td>#12</td>
</tr>
<tr>
<td>I_4</td>
<td>#13</td>
</tr>
<tr>
<td>J_4</td>
<td>#14</td>
</tr>
<tr>
<td>K_4</td>
<td>#15</td>
</tr>
<tr>
<td>J_5</td>
<td>#16</td>
</tr>
<tr>
<td>K_5</td>
<td>#17</td>
</tr>
<tr>
<td>I_6</td>
<td>#18</td>
</tr>
<tr>
<td>J_6</td>
<td>#19</td>
</tr>
<tr>
<td>K_6</td>
<td>#20</td>
</tr>
<tr>
<td>I_7</td>
<td>#21</td>
</tr>
<tr>
<td>J_7</td>
<td>#22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address</th>
<th>Variable number</th>
</tr>
</thead>
<tbody>
<tr>
<td>J_7</td>
<td>#23</td>
</tr>
<tr>
<td>K_7</td>
<td>#24</td>
</tr>
<tr>
<td>I_8</td>
<td>#25</td>
</tr>
<tr>
<td>J_8</td>
<td>#26</td>
</tr>
<tr>
<td>K_8</td>
<td>#27</td>
</tr>
<tr>
<td>I_9</td>
<td>#28</td>
</tr>
<tr>
<td>J_9</td>
<td>#29</td>
</tr>
<tr>
<td>K_9</td>
<td>#30</td>
</tr>
<tr>
<td>I_10</td>
<td>#31</td>
</tr>
<tr>
<td>J_10</td>
<td>#32</td>
</tr>
<tr>
<td>K_10</td>
<td>#33</td>
</tr>
</tbody>
</table>

Subscripts of I, J, and K for indicating the order of argument specification are not written in the actual program.

Restrictions

- **Format**
 G65 must be specified before any argument.

- **Mixture of argument specifications I and II**
 The CNC internally identifies argument specification I and argument specification II. If a mixture of argument specification I and argument specification II is specified, the type of argument specification specified later takes precedence.

Example

```
G65 A1.0 B2.0 I-3.0 I4.0 D5.0 P1000;
```

When both the I4.0 and D5.0 arguments are commanded for variable #7 in this example, the latter, D5.0, is valid.

- **Position of the decimal point**
 The units used for argument data passed without a decimal point correspond to the least input increment of each address. The value of an argument passed without a decimal point may vary according to the system configuration of the machine. It is good practice to use decimal points in macro call arguments to maintain program compatibility.

- **Call nesting**
 Calls can be nested to a depth of four levels including simple calls (G65) and modal calls (G66). This does not include subprogram calls (M98).
● Local variable levels

- Local variables from level 0 to 4 are provided for nesting.
- The level of the main program is 0.
- Each time a macro is called (with G65 or G66), the local variable level is incremented by one. The values of the local variables at the previous level are saved in the CNC.
- When M99 is executed in a macro program, control returns to the calling program. At that time, the local variable level is decremented by one; the values of the local variables saved when the macro was called are restored.

Sample program

(Drill cycle)

Move the tool beforehand along the X– and Z–axes to the position where a drilling cycle starts. Specify Z or W for the depth of a hole, K for the depth of a cut, and F for the cutting feedrate to drill the hole.
• Calling format

G65 P9100 (Z Zz Ww) Kk Ff;

Z: Hole depth (absolute specification)
U: Hole depth (incremental specification)
K: Cutting amount per cycle
F: Cutting feedrate

• Program calling a macro program

O0002;
G50 X100.0 Z200.0 ;
G00 X0 Z102.0 S1000 M03 ;
G65 P9100 Z50.0 K20.0 F0.3 ;
G00 X100.0 Z200.0 M05 ;
M30 ;

O9100;
#1=0 ; Clear the data for the depth of the current hole.
#2=0 ; Clear the data for the depth of the preceding hole.
IF [#23 NE #0] GOTO 1 ;
............... If incremental programming, specifies the jump to N1.
IF [#26 EQ #0] GOTO 8 ;
............... If neither Z nor W is specified, an error occurs.
#23=#5002–#26 ; Calculates the depth of a hole.
N1 #1=#1+#6 ; Calculates the depth of the current hole.
IF [#1 LE #23] GOTO 2 ;
............... Determines whether the hole to be cut is too deep.?
#1=#23 ; Clamps at the depth of the current hole.
N2 G00 W–#2 ; Moves the tool to the depth of the preceding hole at the cutting feedrate.
G01 W– [#1–#2] F#9 ; Drills the hole.
G00 W#1 ; Moves the tool to the drilling start point.
IF [#1 GE #23] GOTO 9 ; Checks whether drilling is completed.
#2=#1 ; Stores the depth of the current hole.
GOTO 1 ;
N9 M99 ;
N8 #3000=1 (NOT Z OR U COMMAND)
Once G66 is issued to specify a modal call a macro is called after a block specifying movement along axes is executed. This continues until G67 is issued to cancel a modal call.

<table>
<thead>
<tr>
<th>G66</th>
<th>P p L</th>
<th><argument–specification></th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Number of the program to call</td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>Repetition count (1 by default)</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Argument : Data passed to the macro</td>
<td></td>
</tr>
</tbody>
</table>

Explanations

- **Call**
 - After G66, specify at address P a program number subject to a modal call.
 - When a number of repetitions is required, a number from 1 to 9999 can be specified at address L.
 - As with a simple call (G65), data passed to a macro program is specified in arguments.

- **Cancellation**
 - When a G67 code is specified, modal macro calls are no longer performed in subsequent blocks.

- **Call nesting**
 - Calls can be nested to a depth of four levels including simple calls (G65) and modal calls (G66). This does not include subprogram calls (M98).

- **Modal call nesting**
 - Modal calls can be nested by specifying another G66 code during a modal call.

Restrictions

- In a G66 block, no macros can be called.
- G66 needs to be specified before any arguments.
- No macros can be called in a block which contains a code such as a miscellaneous function that does not involve movement along an axis.
- Local variables (arguments) can only be set in G66 blocks. Note that local variables are not set each time a modal call is performed.
Sample program

This program makes a groove at a specified position.

```
U: Groove depth (incremental specification)
F: Cutting feed of grooving
```

Calling format

G66 P9110 Uu Ff ;

Program that calls a macro program

```
O0003 ;
G50 X100.0 Z200.0 ;
S1000 M03 ;
G66 P9110 U5.0 F0.5 ;
G00 X60.0 Z80.0 ;
Z50.0 ;
Z30.0 ;
G67 ;
G00 X00.0 Z200.0 M05 ;
M30;
```

Macro program (program called)

```
O9110 ;
G01 U-#21 F#9 ; .................... Cuts the workpiece.
G00 U#21 ; ....................... Retracts the tool.
M99 ;
```
15.6.3
Macro Call Using G Code

By setting a G code number used to call a macro program in a parameter, the macro program can be called in the same way as for a simple call (G65).

Explanations

By setting a G code number from 1 to 9999 used to call a custom macro program (9010 to 9019) in the corresponding parameter (Nos. 6050 to 6059), the macro program can be called in the same way as with G65. For example, when a parameter is set so that macro program O9010 can be called with G81, a user-specific cycle created using a custom macro can be called without modifying the machining program.

Correspondence between parameter numbers and program numbers

<table>
<thead>
<tr>
<th>Program number</th>
<th>Parameter number</th>
</tr>
</thead>
<tbody>
<tr>
<td>O9010</td>
<td>6050</td>
</tr>
<tr>
<td>O9011</td>
<td>6051</td>
</tr>
<tr>
<td>O9012</td>
<td>6052</td>
</tr>
<tr>
<td>O9013</td>
<td>6053</td>
</tr>
<tr>
<td>O9014</td>
<td>6054</td>
</tr>
<tr>
<td>O9015</td>
<td>6055</td>
</tr>
<tr>
<td>O9016</td>
<td>6056</td>
</tr>
<tr>
<td>O9017</td>
<td>6057</td>
</tr>
<tr>
<td>O9018</td>
<td>6058</td>
</tr>
<tr>
<td>O9019</td>
<td>6059</td>
</tr>
</tbody>
</table>

Repetition

As with a simple call, a number of repetitions from 1 to 9999 can be specified at address L.

Argument specification

As with a simple call, two types of argument specification are available: Argument specification I and argument specification II. The type of argument specification is determined automatically according to the addresses used.

Restrictions

Nesting of calls using G codes

In a program called with a G code, no macros can be called using a G code. A G code in such a program is treated as an ordinary G code. In a program called as a subprogram with an M or T code, no macros can be called using a G code. A G code in such a program is also treated as an ordinary G code.
15.6.4 Macro Call Using an M Code

By setting an M code number used to call a macro program in a parameter, the macro program can be called in the same way as with a simple call (G65).

Explanations

By setting an M code number from 1 to 99999999 used to call a custom macro program (O9020 to O9029) in the corresponding parameter (Nos. 6080 to 6089), the macro program can be called in the same way as with G65.

- **Correspondence between parameter numbers and program numbers**

<table>
<thead>
<tr>
<th>Program number</th>
<th>Parameter number</th>
</tr>
</thead>
<tbody>
<tr>
<td>O9020</td>
<td>6080</td>
</tr>
<tr>
<td>O9021</td>
<td>6081</td>
</tr>
<tr>
<td>O9022</td>
<td>6082</td>
</tr>
<tr>
<td>O9023</td>
<td>6083</td>
</tr>
<tr>
<td>O9024</td>
<td>6084</td>
</tr>
<tr>
<td>O9025</td>
<td>6085</td>
</tr>
<tr>
<td>O9026</td>
<td>6086</td>
</tr>
<tr>
<td>O9027</td>
<td>6087</td>
</tr>
<tr>
<td>O9028</td>
<td>6088</td>
</tr>
<tr>
<td>O9029</td>
<td>6089</td>
</tr>
</tbody>
</table>

- **Repetition**

As with a simple call, a number of repetitions from 1 to 9999 can be specified at address L.

- **Argument specification**

As with a simple call, two types of argument specification are available: Argument specification I and argument specification II. The type of argument specification is determined automatically according to the addresses used.

Restrictions

- An M code used to call a macro program must be specified at the start of a block.
- In a macro called with a G code or in a program called as a subprogram with an M or T code, no macros can be called using an M code. An M code in such a macro or program is treated as an ordinary M code.
15.6.5 Subprogram Call Using an M Code

By setting an M code number used to call a subprogram (macro program) in a parameter, the macro program can be called in the same way as with a subprogram call (M98).

```
O0001 ;
M03 ;
M30 ;

O9001 ;
M99 ;
```

Parameter 6071 = 03

Explanations

By setting an M code number from 1 to 99999999 used to call a subprogram in a parameter (Nos. 6071 to 6076), the corresponding custom macro program (O9001 to O9006) can be called in the same way as with M98.

- Correspondence between parameter numbers and program numbers

<table>
<thead>
<tr>
<th>Program number</th>
<th>Parameter number</th>
</tr>
</thead>
<tbody>
<tr>
<td>O9001</td>
<td>6071</td>
</tr>
<tr>
<td>O9002</td>
<td>6072</td>
</tr>
<tr>
<td>O9003</td>
<td>6073</td>
</tr>
<tr>
<td>O9004</td>
<td>6074</td>
</tr>
<tr>
<td>O9005</td>
<td>6075</td>
</tr>
<tr>
<td>O9006</td>
<td>6076</td>
</tr>
<tr>
<td>O9007</td>
<td>6077</td>
</tr>
<tr>
<td>O9008</td>
<td>6078</td>
</tr>
<tr>
<td>O9009</td>
<td>6079</td>
</tr>
</tbody>
</table>

- Repetition

As with a simple call, a number of repetitions from 1 to 9999 can be specified at address L.

- Argument specification

Argument specification is not allowed.

- M code

An M code in a macro program that has been called is treated as an ordinary M code.

Limitations

In a macro called with a G code or in a program called with an M or T code, no subprograms can be called using an M code. An M code in such a macro or program is treated as an ordinary M code.
15.6.6 Subprogram Calls Using a T Code

By enabling subprograms (macro program) to be called with a T code in a parameter, a macro program can be called each time the T code is specified in the machining program.

Explanations

- Call

By setting bit 5 (TCS) of parameter No.6001 to 1, the macro program O9000 can be called when a T code is specified in the machining program. A T code specified in a machining program is assigned to common variable #149.

Limitations

In a macro called with a G code or in a program called with an M or T code, no subprograms can be called using a T code. A T code in such a macro or program is treated as an ordinary T code.
15.6.7 Sample Program

By using the subprogram call function that uses M codes, the cumulative usage time of each tool is measured.

Conditions

- The cumulative usage time of each of tool numbers 1 to 5 is measured. The time is not measured for tools whose number is 6 or more.
- The following variables are used to store the tool numbers and measured times:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#501</td>
<td>Cumulative usage time of tool number 1</td>
</tr>
<tr>
<td>#502</td>
<td>Cumulative usage time of tool number 2</td>
</tr>
<tr>
<td>#503</td>
<td>Cumulative usage time of tool number 3</td>
</tr>
<tr>
<td>#504</td>
<td>Cumulative usage time of tool number 4</td>
</tr>
<tr>
<td>#505</td>
<td>Cumulative usage time of tool number 5</td>
</tr>
</tbody>
</table>

- Usage time starts being counted when the M03 command is specified and stops when M05 is specified. System variable #3002 is used to measure the time during which the cycle start lamp is on. The time during which the machine is stopped by feed hold and single block stop operation is not counted, but the time used to change tools and pallets is included.

Operation check

- Parameter setting
 Set 3 in parameter No.6071, and set 05 in parameter No.6072.
- Variable value setting
 Set 0 in variables #501 to #505.
- Program that calls a macro program

```
O0001;
T0100 M06;
M03;
:
M05; ........................ Changes #501.
T0200 M06;
M03;
:
M05; ........................ Changes #502.
T0300 M06;
M03;
:
M05; ........................ Changes #503.
T0400 M06;
M03;
:
M05; ........................ Changes #504.
T0500 M06;
M03;
:
M05; ........................ Changes #505.
M30;
```
Macro program (program called)

O9001(M03); .. Macro to start counting
M01;
IF[FIX[#4120/100] EQ 0]GOTO 9; No tool specified
IF[FIX[#4120/100] GT 5]GOTO 9; Out–of–range tool number
#3002=0; .. Clears the timer.
N9 M03; ... Rotates the spindle in the forward direction.
M99;

O9002(M05); .. Macro to end counting
M01;
IF[FIX[#4120/100] EQ 0]GOTO 9; No tool specified
IF[FIX[#4120/100] GT 5]GOTO 9; Out–of–range tool number
#500+FIX[#4120/100]=#3002+#500+FIX[#4120/100];
.. Calculates cumulative time.

N9 M05; ... Stops the spindle.
M99;
15.7 PROCESSING MACRO STATEMENTS

For smooth machining, the CNC prereads the CNC statement to be performed next. This operation is referred to as buffering. In tool nose radius compensation mode (G41, G42), the NC prereads NC statements two or three blocks ahead to find intersections. Macro statements for arithmetic expressions and conditional branches are processed as soon as they are read into the buffer. Blocks containing M00, M01, M02, or M30, blocks containing M codes for which buffering is suppressed by setting parameter (Nos. 3411 to 3420), and blocks containing G31 are not preread.

Explanations

- When the next block is not buffered (M codes that are not buffered, G31, etc.)

- Buffering the next block in other than tool nose radius compensation mode (G41, G42) (normally prereading one block)

When N1 is being executed, the next NC statement (N4) is read into the buffer. The macro statements (N2, N3) between N1 and N4 are processed during execution of N1.
• Buffering the next block in tool nose radius compensation mode (G41, G42)

When N1 is being executed, the NC statements in the next two blocks (up to N5) are read into the buffer. The macro statements (N2, N4) between N1 and N5 are processed during execution of N1.

• When the next block involves no movement in tool nose radius compensation (G41, G42) mode

When the NC1 block is being executed, the NC statements in the next two blocks (up to N5) are read into the buffer. Since N5 is a block that involves no movement, an intersection cannot be calculated. In this case, the NC statements in the next three blocks (up to N7) are read. The macro statements (N2, N4, and N6) between N1 and N7 are processed during execution of N1.
Custom macro programs are similar to subprograms. They can be registered and edited in the same way as subprograms. The storage capacity is determined by the total length of tape used to store both custom macros and subprograms.
15.9 LIMITATIONS

- **MDI operation**

The macro call command can be specified in MDI mode too. During automatic operation, however, it is impossible to switch to the MDI mode for a macro program call.

- **Sequence number search**

 A custom macro program cannot be searched for a sequence number.

- **Single block**

 Even while a macro program is being executed, blocks can be stopped in the single block mode (except blocks containing macro call commands, arithmetic operation commands, and control commands).

 A block containing a macro call command (G65, G66, or G67) does not stop even when the single block mode is on. Blocks containing arithmetic operation commands and control commands can be stopped in single block mode by setting SBM (bit 5 of parameter 6000) to 1.

 Single block stop operation is used for testing custom macro programs. Note that when a single block stop occurs at a macro statement in tool nose radius compensation mode, the statement is assumed to be a block that does not involve movement, and proper compensation cannot be performed in some cases. (Strictly speaking, the block is regarded as specifying a movement with a travel distance 0.)

- **Optional block skip**

 A / appearing in the middle of an `<expression>` (enclosed in brackets [] on the right-hand side of an arithmetic expression) is regarded as a division operator; it is not regarded as the specifier for an optional block skip code.

- **Operation in EDIT mode**

 By setting NE8 (bit 0 of parameter 3202) and NE9 (bit 4 of parameter 3202) to 1, deletion and editing are disabled for custom macro programs and subprograms with program numbers 8000 to 8999 and 9000 to 9999. Registered custom macro programs and subprograms should be protected from being destroyed by accident. When the entire memory is cleared (by pressing the ***RESET*** and ***DELETE*** keys at the same time to turn on the power), the contents of memory such as custom macro programs are deleted.

- **Reset**

 With a reset operation, local variables and common variables #100 to #149 are cleared to null values. They can be prevented from being cleared by setting, CLV and CCV (bits 7 and 6 of parameter 6001). System variables #1000 to #1133 are not cleared.

 A reset operation clears any called states of custom macro programs and subprograms, and any DO states, and returns control to the main program.

- **Display of the PROGRAM RESTART screen**

 As with M98, the M and T codes used for subprogram calls are not displayed.

- **Feed hold**

 When a feed hold is enabled during execution of a macro statement, the machine stops after execution of the macro statement. The machine also stops when a reset or alarm occurs.

- **Constant values that can be used in `<expression>`**

 +0.0000001 to +999999999

 −999999999 to −0.0000001

 The number of significant digits is 8 (decimal). If this range is exceeded, P/S alarm No. 003 occurs.
15.10 EXTERNAL OUTPUT COMMANDS

In addition to the standard custom macro commands, the following macro commands are available. They are referred to as external output commands.

- BPRNT
- DPRNT
- POPEN
- PCLOS

These commands are provided to output variable values and characters through the reader/punch interface.

Explanations

Specify these commands in the following order:

Open command: POPEN
Before specifying a sequence of data output commands, specify this command to establish a connection to an external input/output device.

Data output command: BPRNT or DPRNT
Specify necessary data output.

Close command: PCLOS
When all data output commands have completed, specify PCLOS to release a connection to an external input/output device.

- **Open command POPEN**
 POPEN establishes a connection to an external input/output device. It must be specified before a sequence of data output commands. The CNC outputs a DC2 control code.

- **Data output command BPRNT**
 BPRNT \[a \ #b \ [c \] \ ... \]
 The BPRNT command outputs characters and variable values in binary.

(i) Specified characters are converted to corresponding ISO codes according to the setting data (ISO) that is output at that time. Specifiable characters are as follows:
 - Letters (A to Z)
 - Numbers
 - Special characters (*, /, +, –, etc.)
 An asterisk (*) is output by a space code.

(ii) All variables are stored with a decimal point. Specify a variable followed by the number of significant decimal places enclosed in brackets. A variable value is treated as 2-word (32-bit) data, including the decimal digits. It is output as binary data starting from the highest byte.

(iii) When specified data has been output, an EOB code is output according to the ISO code settings.

(iv) Null variables are regarded as 0.
Example)

Variable value
\#100=0.40596
\#101=\textasciitilde1638.4
\#10=12.34

\textbullet\ Data output command
\texttt{DPRNT}

\texttt{DPRNT [a \#b [c d] \ldots]}

Number of significant decimal places
Number of significant digits in the integer part
Variable
digit
Character

The \texttt{DPRNT} command outputs characters and each digit in the value of a variable according to the code set in the settings (ISO).

(i) For an explanation of the \texttt{DPRNT} command, see Items (i), (iii), and (iv) for the \texttt{BPRNT} command.

(ii) When outputting a variable, specify \# followed by the variable number, then specify the number of digits in the integer part and the number of decimal places enclosed in brackets.

One code is output for each of the specified number of digits, starting with the highest digit. For each digit, a code is output according to the settings (ISO). The decimal point is also output using a code set in the settings (ISO).

Each variable must be a numeric value consisting of up to eight digits. When high--order digits are zeros, these zeros are not output if PRT (bit 1 of parameter 6001) is 1. If PRT(bit 1 of parameter 6001) is 0, a space code is output each time a zero is encountered.

When the number of decimal places is not zero, digits in the decimal part are always output. If the number of decimal places is zero, no decimal point is output. When PRT (bit 1 of parameter 6001) is 0, a space code is output to indicate a positive number instead of +; if PRT(bit 1 of parameter 6001) is 1, no code is output.
Example)

Variable value

#2=128.47398
#5=-91.2
#30=123.456

(1) Parameter PRT(No.6001#1)=0

(2) Parameter PRT(No.6001#1)=1

- Close command PCLOS
 PCLOS ;
 The PCLOS command releases a connection to an external input/output device. Specify this command when all data output commands have terminated. DC4 control code is output from the CNC.

- Required setting
 Specify the channel use for parameter 020. According to the specification of this parameter, set data items (such as the baud rate) for the reader/punch interface.
 I/O channel 0 : Parameters 101, 102 and 103
 I/O channel 1 : Parameters 111, 112 and 113
 I/O channel 2 : Parameters 121, 122 and 123
 Never specify output to the Fanuc Cassette or floppy disks.)
 When specifying a DPRNT command to output data, specify whether leading zeros are output as spaces (by setting PRT (bit 1 of parameter 6001) to 1 or 0). To indicate the end of a line of data in ISO code, specify whether to use only an LF (NCR, of bit 3 of parameter 0103 is 0) or an LF and CR (NCR is 1).
NOTE

1 It is not necessary to always specify the open command (POpen), data output command (BPRnt, DPRnt), and close command (PClos) together. Once an open command is specified at the beginning of a program, it does not need to be specified again except after a close command was specified.

2 Be sure to specify open commands and close commands in pairs. Specify the close command at the end of the program. However, do not specify a close command if no open command has been specified.

3 When a reset operation is performed while commands are being output by a data output command, output is stopped and subsequent data is erased. Therefore, when a reset operation is performed by a code such as M30 at the end of a program that performs data output, specify a close command at the end of the program so that processing such as M30 is not performed until all data is output.

4 Abbreviated macro words enclosed in brackets [] remains unchanged. However, note that when the characters in brackets are divided and input several times, the second and subsequent abbreviations are converted and input.

5 O can be specified in brackets []. Note that when the characters in brackets [] are divided and input several times, O is omitted in the second and subsequent inputs.
15.11
INTERRUPTION TYPE
CUSTOM MACRO

Format

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M96 Pxxx;</td>
<td>Enables custom macro interrupt</td>
</tr>
<tr>
<td>M97;</td>
<td>Disables custom macro interrupt</td>
</tr>
</tbody>
</table>

Explanations

Use of the interruption type custom macro function allows the user to call a program during execution of an arbitrary block of another program. This allows programs to be operated to match situations which vary from time to time.

(1) When a tool abnormality is detected, processing to handle the abnormality is started by an external signal.

(2) A sequence of machining operations is interrupted by another machining operation without the cancellation of the current operation.

(3) At regular intervals, information on current machining is read. Listed above are examples like adaptive control applications of the interruption type custom macro function.

When a program is being executed, another program can be called by inputting an interrupt signal (UINT) from the machine. This function is referred to as an interruption type custom macro function. Program an interrupt command in the following format:

When M96 Pxxx is specified in a program, subsequent program operation can be interrupted by an interrupt signal (UINT) input to execute the program specified by Pxxx.
CAUTION
When the interrupt signal (UINT, marked by * in Fig. 15.11) is input after M97 is specified, it is ignored. And the interrupt signal must not be input during execution of the interrupt program.

15.11.1 Specification Method

Explanations

• Interrupt conditions

A custom macro interrupt is available only during program execution. It is enabled under the following conditions

– When memory operation or MDI operation is selected
– When STL (start lamp) is on
– When a custom macro interrupt is not currently being processed

• Specification

Generally, the custom macro interrupt function is used by specifying M96 to enable the interrupt signal (UINT) and M97 to disable the signal. Once M96 is specified, a custom macro interrupt can be initiated by the input of the interrupt signal (UINT) until M97 is specified or the NC is reset. After M97 is specified or the NC is reset, no custom macro interrupts are initiated even when the interrupt signal (UINT) is input. The interrupt signal (UINT) is ignored until another M96 command is specified.

The interrupt signal (UINT) becomes valid after M96 is specified. Even when the signal is input in M97 mode, it is ignored. When the signal input in M97 mode is kept on until M96 is specified, a custom macro interrupt is initiated as soon as M96 is specified (only when the status–triggered scheme is employed); when the edge–triggered scheme is employed, the custom macro interrupt is not initiated even when M96 is specified.

NOTE
For the status–triggered and edge–triggered schemes, see Item “Custom macro interrupt signal (UINT)” of Subsec. 16.11.2.
15.11.2 Details of Functions

Explanations

- **ubprogram–type interrupt and macro–type interrupt**
 There are two types of custom macro interrupts: Subprogram–type interrupts and macro–type interrupts. The interrupt type used is selected by MSB (bit 5 of parameter 6003).

 (a) **Subprogram–type interrupt**
 An interrupt program is called as a subprogram. This means that the levels of local variables remain unchanged before and after the interrupt. This interrupt is not included in the nesting level of subprogram calls.

 (b) **Macro–type interrupt**
 An interrupt program is called as a custom macro. This means that the levels of local variables change before and after the interrupt. The interrupt is not included in the nesting level of custom macro calls. When a subprogram call or a custom macro call is performed within the interrupt program, this call is included in the nesting level of subprogram calls or custom macro calls. Arguments cannot be passed from the current program even when the custom macro interrupt is a macro–type interrupt.

- **M codes for custom macro interrupt control**
 In general, custom macro interrupts are controlled by M96 and M97. However, these M codes may already be used for other purposes (such as an M function or macro M code call) by some machine tool builders. For this reason, MPR (bit 4 of parameter 6003) is provided to set M codes for custom macro interrupt control.
 When specifying this parameter to use the custom macro interrupt control M codes set by parameters, set parameters 6033 and 6034 as follows: Set the M code to enable custom macro interrupts in parameter 6033 and set the M code to disable custom macro interrupts in parameter 6034.
 When specifying that parameter–set M codes are not used, M96 and M97 are used as the custom macro control M codes regardless of the settings of parameters 6033 and 6034. The M codes used for custom macro interrupt control are processed internally (they are not output to external units). However, in terms of program compatibility, it is undesirable to use M codes other than M96 and M97 to control custom macro interrupts.

- **Custom macro interrupts and NC statements**
 When performing a custom macro interrupt, the user may want to interrupt the NC statement being executed, or the user may not want to perform the interrupt until the execution of the current block is completed. MIN (bit 2 of parameter 6003) is used to select whether to perform interrupts even in the middle of a block or to wait until the end of the block.
(i) When the interrupt signal (UINT) is input, any movement or dwell being performed is stopped immediately and the interrupt program is executed.

(ii) If there are NC statements in the interrupt program, the command in the interrupted block is lost and the NC statement in the interrupt program is executed. When control is returned to the interrupted program, the program is restarted from the next block after the interrupted block.

(iii) If there are no NC statements in the interrupt program, control is returned to the interrupted program by M99, then the program is restarted from the command in the interrupted block.

- Type I
 (when an interrupt is performed even in the middle of the block)

- Type II
 (when an interrupt is performed at the end of the block)
• **Conditions for enabling and disabling the custom macro interrupt signal**

 The interrupt signal becomes valid after execution starts of a block that contains M96 for enabling custom macro interrupts. The signal becomes invalid when execution starts of a block that contains M97. While an interrupt program is being executed, the interrupt signal becomes invalid. The signal become valid when the execution of the block that immediately follows the interrupted block in the main program is started after control returns from the interrupt program. In type I, if the interrupt program consists of only macro statements, the interrupt signal becomes valid when execution of the interrupted block is started after control returns from the interrupt program.

• **Custom macro interrupt during execution of a block that involves cycle operation**

 - **For type I**

 Even when cycle operation is in progress, movement is interrupted, and the interrupt program is executed. If the interrupt program contains no NC statements, the cycle operation is restarted after control is returned to the interrupted program. If there are NC statements, the remaining operations in the interrupted cycle are discarded, and the next block is executed.

 - **For type II**

 When the last movement of the cycle operation is started, macro statements in the interrupt program are executed unless an NC statement is encountered. NC statements are executed after cycle operation is completed.
There are two schemes for custom macro interrupt signal (UINT) input: The status–triggered scheme and edge–triggered scheme. When the status–triggered scheme is used, the signal is valid when it is on. When the edge triggered scheme is used, the signal becomes valid on the rising edge when it switches from off to on status.

One of the two schemes is selected with TSE (bit 3 of parameter 6003). When the status–triggered scheme is selected by this parameter, a custom macro interrupt is generated if the interrupt signal (UINT) is on at the time the signal becomes valid. By keeping the interrupt signal (UINT) on, the interrupt program can be executed repeatedly.

When the edge–triggered scheme is selected, the interrupt signal (UINT) becomes valid only on its rising edge. Therefore, the interrupt program is executed only momentarily (in cases when the program consists of only macro statements). When the status–triggered scheme is inappropriate, or when a custom macro interrupt is to be performed just once for the entire program (in this case, the interrupt signal may be kept on), the edge–triggered scheme is useful.

Except for the specific applications mentioned above, use of either scheme results in the same effects. The time from signal input until a custom macro interrupt is executed does not vary between the two schemes.

In the above example, an interrupt is executed four times when the status triggered scheme is used; when the edge–triggered scheme is used, the interrupt is executed just once.
To return control from a custom macro interrupt to the interrupted program, specify M99. A sequence number in the interrupted program can also be specified using address P. If this is specified, the program is searched from the beginning for the specified sequence number. Control is returned to the first sequence number found.

When a custom macro interrupt program is being executed, no interrupts are generated. To enable another interrupt, execute M99. When M99 is specified alone, it is executed before the preceding commands terminate. Therefore, a custom macro interrupt is enabled for the last command of the interrupt program. If this is inconvenient, custom macro interrupts should be controlled by specifying M96 and M97 in the program.

When a custom macro interrupt is being executed, no other custom macro interrupts are generated; when an interrupt is generated, additional interrupts are inhibited automatically. Executing M99 makes it possible for another custom macro interrupt to occur. M99 specified alone in a block is executed before the previous block terminates. In the following example, an interrupt is enabled for the Gxx block of O1234. When the signal is input, O1234 is executed again. O5678 is controlled by M96 and M97. In this case, an interrupt is not enabled for O5678 (enabled after control is returned to O1000).

NOTE

When an M99 block consists only of address O, N, P, L, or M, this block is regarded as belonging to the previous block in the program. Therefore, a single–block stop does not occur for this block. In terms of programming, the following (1) and (2) are basically the same. (The difference is whether G○○ is executed before M99 is recognized.)

1. G○○ X○○○ ; M99 ;
2. G○○ X○○○ M99 ;
A custom macro interrupt is different from a normal program call. It is initiated by an interrupt signal (UINT) during program execution. In general, any modifications of modal information made by the interrupt program should not affect the interrupted program. For this reason, even when modal information is modified by the interrupt program, the modal information before the interrupt is restored when control is returned to the interrupted program by M99.

When control is returned from the interrupt program to the interrupted program by M99 Pxxxx, modal information can again be controlled by the program. In this case, the new continuous information modified by the interrupt program is passed to the interrupted program. Restoration of the old modal information present before the interrupt is not desirable. This is because after control is returned, some programs may operate differently depending on the modal information present before the interrupt. In this case, the following measures are applicable:

1. The interrupt program provides modal information to be used after control is returned to the interrupted program.

2. After control is returned to the interrupted program, modal information is specified again as necessary.

The modal information present before the interrupt becomes valid. The new modal information modified by the interrupt program is made invalid.

The new modal information modified by the interrupt program remains valid even after control is returned. The old modal information which was valid in the interrupted block can be read using custom macro system variables #4001 to #4120.

Note that when modal information is modified by the interrupt program, system variables #4001 to #4120 are not changed.
- **System variables (position information values) for the interrupt program**

 - The coordinates of point A can be read using system variables #5001 and up until the first NC statement is encountered.

 - The coordinates of point A' can be read after an NC statement with no move specifications appears.

 - The machine coordinates and workpiece coordinates of point B' can be read using system variables #5021 and up and #5041 and up.

- **Custom macro interrupt and custom macro modal call**

 When the interrupt signal (UINT) is input and an interrupt program is called, the custom macro modal call is canceled (G67). However, when G66 is specified in the interrupt program, the custom macro modal call becomes valid. When control is returned from the interrupt program by M99, the modal call is restored to the state it was in before the interrupt was generated. When control is returned by M99Pxxxx, the modal call in the interrupt program remains valid.

- **Custom macro interrupt and program restart**

 When the interrupt signal (UINT) is input while a return operation is being performed in the dry run mode after the search operation for program restart, the interrupt program is called after restart operation terminates for all axes. This means that interrupt type II is used regardless of the parameter setting.

- **DNC operation and Interruption type custom macro**

 “Interuption type custom macro” cannot be done during DNC operation or executing a program with an external input–output device.
16 PROGRAMMABLE PARAMETER ENTRY (G10)

General

The values of parameters can be entered in a program. This function is used for setting pitch error compensation data when attachments are changed or the maximum cutting feedrate or cutting time constants are changed to meet changing machining conditions.
16. PROGRAMMABLE PARAMETER ENTRY (G10)

Format

<table>
<thead>
<tr>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>G10L50; Parameter entry mode setting</td>
</tr>
<tr>
<td>N_R_; For parameters other than the axis type</td>
</tr>
<tr>
<td>N_P_R_; For axis type parameters</td>
</tr>
<tr>
<td>G11; Parameter entry mode cancel</td>
</tr>
</tbody>
</table>

Meaning of command

| N_: Parameter No. (4digits) or compensation position No. (0 to 1023) for pitch errors compensation +10,000 (5digit) |
| R_: Parameter setting value (Leading zeros can be omitted.) |
| P_: Axis No. 1 to 8 (Used for entering axis type parameters) |

Explanations

- **Parameter setting value (R_)**
 - Do not use a decimal point in a value set in a parameter (R_).
 - A decimal point cannot be used in a custom macro variable for R_ either.

- **Axis No. (P_)**
 - Specify an axis number (P_) from 1 to 8 (up to eight axes) for an axis type parameter. The control axes are numbered in the order in which they are displayed on the CNC display.
 - For example, specify P2 for the control axis which is displayed second.

WARNING

1. Do not fail to perform reference point return manually after changing the pitch error compensation data or backlash compensation data. Without this, the machine position can deviate from the correct position.
2. The canned–cycle mode must be cancelled before entering of parameters. When not cancelled, the drilling motion will be activated.

NOTE

Other NC statements cannot be specified while in parameter input mode.
Examples

1. Set bit 2 (SPB) of bit type parameter No. 3404

```
G10L50 ; Parameter entry mode
N3404R00000100 ; SBP setting
G11 ; cancel parameter entry mode
```

2. Change the values for the Z-axis (2nd axis) and C-axis (4th axis) in axis type parameter No.1322 (the coordinates of stored stroke limit 2 in the positive direction for each axis).

```
G10L50 ; Parameter entry mode
N1322P3R4500 ; Modify Z axis
N1322P4R12000 ; Modify C axis
G11 ; cancel parameter entry mode
```
MEMORY OPERATION BY Series 10/11 TAPE FORMAT

Programs in the Series 10/11 tape format can be registered in memory for memory operation by setting bit 1 of parameter No. 0001. Registration to memory and memory operation are possible for the functions which use the same tape format as that for the Series 10/11 as well as for the following functions which use a different tape format:

- Equal-lead threading
- Subprogram calling
- Canned cycle
- Multiple repetitive canned cycle
- Canned drilling cycle

NOTE
Registration to memory and memory operation are possible only for the functions available in this CNC.
17.1 ADDRESSES AND SPECIFIABLE VALUE RANGE FOR Series 10/11 TAPE FORMAT

Some addresses which cannot be used for the this CNC can be used in the Series 10/11 tape format. The specifiable value range for the FS10/11 tape format is basically the same as that for the this CNC. Sections II–17.2 to II–17.6 describe the addresses with a different specifiable value range. If a value out of the specifiable value range is specified, an alarm is issued.
17.2 EQUAL–LEAD THREADING

Format

G32IP_F_Q_;
or
G32IP_E_Q_;

IP: Combination of axis addresses
F: Lead along the longitudinal axis
E: Lead along the longitudinal axis
Q: Sight of the threading start angle

Explanations

• Address

Although the FS10/11 allows the operator to specify the number of threads per inch with address E, the FS10/11 tape format does not. Addresses E and F are used in the same way for specifying the lead along the longitudinal axis. The thread lead specified with address E is therefore also assumed as a continuous–state value for address F.

• Specifiable value range for the thread lead

<table>
<thead>
<tr>
<th>Address for thread lead</th>
<th>mm input</th>
<th>inch input</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>0.0001 to 500.0000mm</td>
<td>0.000001 to 9.999999inch</td>
</tr>
<tr>
<td>F</td>
<td>0.0001 to 500.0000mm</td>
<td>0.000001 to 9.999999inch</td>
</tr>
<tr>
<td>Command with a decimal point</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Command without a decimal point</td>
<td>0.01 to 500.00mm</td>
<td>0.0001 to 9.9999inch</td>
</tr>
</tbody>
</table>

• Specifiable value range for the feedrate

<table>
<thead>
<tr>
<th>Address for feedrate</th>
<th>mm input</th>
<th>inch input</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed per minute</td>
<td>1 to 240000 mm/min</td>
<td>0.01 to 9600.00 inch/min</td>
</tr>
<tr>
<td>Increment system (IS–B)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed per rotation</td>
<td>0.01 to 500.00 mm/rev</td>
<td>0.0001 to 9.9999 inch/rev</td>
</tr>
<tr>
<td>Increment system (IS–C)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WARNING

Specify the feedrate one more time when switching between feed per minute and feed per rotation.
17.3 SUBPROGRAM CALLING

Format

\[
\text{M98P} \quad \text{L} \quad \text{L} \quad \text{L} \quad \text{L};
\]

P: Subprogram number
L: Repetition count

Explanation

- **Address**
 Address L cannot be used in this CNC tape format but can be used in the FS10/11 tape format.

- **Subprogram number**
 The specifiable value range is the same as that for this CNC (1 to 9999). If a value of more than four digits is specified, the last four digits are assumed as the subprogram number.

- **Repetition count**
 The repetition count L can be specified in the range from 1 to 9999. If no repetition count is specified, 1 is assumed.
17.4 CANNED CYCLE

Format

<table>
<thead>
<tr>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outer / inner surface turning cycle (straight cutting cycle)</td>
<td>G90X_Z_F_;</td>
</tr>
<tr>
<td>Outer / inner surface turning cycle (taper cutting cycle)</td>
<td>G90X_Z_I_F_;</td>
</tr>
<tr>
<td>I: Length of the taper section along the X-axis (radius)</td>
<td></td>
</tr>
<tr>
<td>Threading cycle (straight threading cycle)</td>
<td>G92X_Z_F_Q_;</td>
</tr>
<tr>
<td>F: Thread lead</td>
<td></td>
</tr>
<tr>
<td>Q: Shift of the threading start angle</td>
<td></td>
</tr>
<tr>
<td>Threading cycle (taper threading cycle)</td>
<td>G92X_Z_I_F_;</td>
</tr>
<tr>
<td>I: Length of the taper section along the X-axis (radius)</td>
<td></td>
</tr>
<tr>
<td>End surface turning cycle (front taper cutting cycle)</td>
<td>G94X_Z_F_;</td>
</tr>
<tr>
<td>End surface turning cycle (front taper cutting cycle)</td>
<td>G94X_Z_K_F_;</td>
</tr>
<tr>
<td>K: Length of the taper section along the Z-axis</td>
<td></td>
</tr>
</tbody>
</table>

• **Address**
 Addresses I and K cannot be used for a canned cycle in this CNC tape format but can be used in the FS10/11 command format.

• **Specifiable value range for the feedrate**
 Same as that for equal–lead threading in section II–17.2. See section II–17.2.
17.5
MULTIPLE REPETITIVE CANNED TURNING CYCLE

Format

Outer / inner surface turning cycle
G71P_Q_U_W_I_K_D_F_S_T_
I : Length and direction of cutting allowance for finishing the rough machining cycle along the X-axis (ignored if specified)
K : Length and direction of cutting allowance for finishing the rough machining cycle along the Z-axis (ignored if specified)
D : Depth of cut

End surface rough machining cycle
G72P_Q_U_W_I_K_D_F_S_T_
I : Length and direction of cutting allowance for finishing the rough machining cycle along the X-axis (ignored if specified)
K : Length and direction of cutting allowance for finishing the rough machining cycle along the Z-axis (ignored if specified)
D : Depth of cut

Closed-loop turning cycle
G73P_Q_U_W_I_K_D_F_S_T_
I : Length and direction of clearance along the X-axis (radius)
K : Length and direction of clearance along the Z-axis
D : Number of divisions

End surface cutting–off cycle
G74X_Z_I_K_F_D_
or
G74U_W_I_K_F_D_
I : Distance to be traveled along the X-axis
K : Depth of cut along the Z-axis
D : Clearance of the tool at the end of the cutting path

Outer / inner surface cutting–off cycle
G75X_Z_I_K_F_D_
or
G75U_W_I_K_F_D_
I : Distance to be traveled along the X-axis
K : Depth of cut along the Z-axis
D : Clearance of the tool at the end of the cutting path

Multiple repetitive threading cycle
G76X_Z_I_K_D_F_A_P_Q_
I : Difference of radiusses at threads
K : Height of thread crest (radius)
D : Depth of the first cut (radius)
A : Angle of the tool tip (angle of ridges)
P : Method of cutting
If the following addresses are specified in the FS10/11 tape format, they are ignored.

- I and K for the outer/inner surface rough machining cycle (G71)
- I and K for the end surface rough machining cycle (G72)

For the multiple repetitive threading cycle (G76), specify P1 (constant depth of cutting with a single edge) or P2 (constant depth of zigzag thread cutting with both edges) as the cutting method (P). A value of between 0 and 120 degrees can be specified for tool tip angle A. If other values are specified, P/S alarm 062 is issued.

Address D (cutting depth and retraction distance) can be specified with a value between \(-99999999\) and \(99999999\), in the minimum input increment, even when calculator-like decimal point input is specified (when bit 0 (DPI) of parameter No. 3401 is set to 1). When address D contains a decimal point, P/S alarm No. 007 is issued.

The specifiable value range for the feedrate is the same as that for equal-lead threading. See section II–17.2.
17. MEMORY OPERATION BY SERIES 10/11 TAPE FORMAT - 63604EN/01 PROGRAMMING

17.6 CANNED DRILLING CYCLE FORMATS

Format

<table>
<thead>
<tr>
<th>Drilling cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>G81X_C_Z_F_L_ ; or G82X_C_Z_R_F_L_ ;</td>
</tr>
<tr>
<td>R : Distance from the initial level to the R position</td>
</tr>
<tr>
<td>P : Dwell time at the bottom of the hole</td>
</tr>
<tr>
<td>F : Cutting feedrate</td>
</tr>
<tr>
<td>L : Number of repetitions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peck drilling cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>G81X_C_Z_R_Q_P_F_L_ ;</td>
</tr>
<tr>
<td>R : Distance from the initial level to the R position</td>
</tr>
<tr>
<td>Q : Depth of cut in each cycle</td>
</tr>
<tr>
<td>P : Dwell time at the bottom of the hole</td>
</tr>
<tr>
<td>F : Cutting feedrate</td>
</tr>
<tr>
<td>L : Number of repetitions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>High–speed peck drilling cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>G83.1X_C_Z_R_Q_P_F_L_ ;</td>
</tr>
<tr>
<td>R : Distance from the initial level to the R position</td>
</tr>
<tr>
<td>Q : Depth of cut in each cycle</td>
</tr>
<tr>
<td>P : Dwell time at the bottom of the hole</td>
</tr>
<tr>
<td>F : Cutting feedrate</td>
</tr>
<tr>
<td>L : Number of repetitions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>G84X_C_Z_R_P_F_L_ ;</td>
</tr>
<tr>
<td>R : Distance from the initial level to the R position</td>
</tr>
<tr>
<td>P : Dwell time at the bottom of the hole</td>
</tr>
<tr>
<td>F : Cutting feedrate</td>
</tr>
<tr>
<td>L : Number of repetitions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rigid tapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>G84.2X_C_Z_R_P_F_L_S_ ;</td>
</tr>
<tr>
<td>R : Distance from the initial level to the R position</td>
</tr>
<tr>
<td>P : Dwell time at the bottom of the hole</td>
</tr>
<tr>
<td>F : Cutting feedrate</td>
</tr>
<tr>
<td>L : Number of repetitions</td>
</tr>
<tr>
<td>S : Spindle speed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Boring cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>G85X_C_Z_R_F_L_ ; or G89X_C_Z_R_P_F_L_ ;</td>
</tr>
<tr>
<td>R : Distance from the initial level to the R position</td>
</tr>
<tr>
<td>P : Dwell time at the bottom of the hole</td>
</tr>
<tr>
<td>F : Cutting feedrate</td>
</tr>
<tr>
<td>L : Number of repetitions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cancel</th>
</tr>
</thead>
<tbody>
<tr>
<td>G80 ;</td>
</tr>
</tbody>
</table>

Explanations

- **Address**

For this CNC tape format, the address used to specify the number of repetitions is K. For the FS10/11 tape format, it is L.
Some G codes are valid only for this CNC tape format or FS10/11 tape format. Specifying an invalid G code results in P/S alarm No. 10 being generated.

G codes valid only for the Series 10/11 tape format
- G81, G82, G83.1, G84.2

G codes valid only for the Series 21 tape format
- G87, G88

Positioning plane and drilling axis

For this CNC tape format, the positioning plane and drilling axis are determined according to the G code for the canned cycle used.

For the FS10/11 tape format, the positioning plane and drilling axis are determined according to G17/G19.

The drilling axis is the basic axis (Z-axis or X-axis) that does not lie in the positioning plane.

<table>
<thead>
<tr>
<th>G code</th>
<th>Positioning plane</th>
<th>Drilling axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>G17</td>
<td>XY plane</td>
<td>Z-axis</td>
</tr>
<tr>
<td>G19</td>
<td>YZ plane</td>
<td>X-axis</td>
</tr>
</tbody>
</table>

Resetting bit 1 (FXY) of parameter No. 5101 enables fixing of the drilling axis to the Z-axis.

Details of data specifying machining

Data for the canned cycle is specified as follows:

```
G□□□ X C Z R Q P F L ;
```

- **Drilling mode**: G□□□
- **Hole position data**: X/U (Z/W) C/H
- **Drilling data**: Z/W (X/U)
- **Number of repetitions**: R
- **Drilling mode**: Q
- **Hole position data**: P
- **Drilling data**: F
- **Number of repetitions**: L

Setting Address Explanation

<table>
<thead>
<tr>
<th>Setting</th>
<th>Address</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drilling mode</td>
<td>G□□□</td>
<td>Canned drilling cycle G code</td>
</tr>
<tr>
<td>Hole position data</td>
<td>X/U (Z/W) C/H</td>
<td>Incremental or absolute value used to specify the hole position</td>
</tr>
<tr>
<td>Drilling mode</td>
<td>Z/W (X/U)</td>
<td>Incremental or absolute value used to specify the distance from the R position to the bottom of the hole</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>Incremental value used to specify the distance from the initial level to the R position, or absolute value used to specify the R position. Which to use depends on bit 6 of parameter No. 5102 and the G code system being used.</td>
</tr>
<tr>
<td></td>
<td>Q</td>
<td>Incremental value used to specify the depth of cut in each G83 or G83.1 cycle with radius programming.</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>Dwell time at the bottom of the hole. The relationship between the dwell time and the specified value is the same as that for G04.</td>
</tr>
<tr>
<td>Number of repetitions</td>
<td>L</td>
<td>Number of repetitions for a sequence of cutting operations. If L is not specified, it is assumed to be 1.</td>
</tr>
</tbody>
</table>
• Specifying the R position

The R position is specified as an incremental value for the distance between the initial level to the R position. For the FS10/11 tape format, the parameter and the G code system used determine whether an incremental or absolute value is to be used to specify the distance between the initial level and the R position.

If bit 6(RAB) of parameter No. 5102 is 0, an incremental value is always used. If it is 1, the type of value used depends on the G code system used. When G code system A is used, an absolute value is used. When G code system B or C is used, an absolute value is used in G90 mode, and an incremental value is used in G91 mode.

<table>
<thead>
<tr>
<th></th>
<th>Series 10/11 tape format</th>
<th>Series 16/18/160/180 tape format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 6 of parameter No. 5102 = 1</td>
<td>Bit 6 of parameter No. 5102 = 0</td>
<td>Incremental</td>
</tr>
<tr>
<td>G code system</td>
<td></td>
<td>Incremental</td>
</tr>
<tr>
<td>A</td>
<td>B, C</td>
<td>Incremental</td>
</tr>
<tr>
<td>Absolute</td>
<td>G90, G91</td>
<td>Absolute</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Incremental</td>
</tr>
</tbody>
</table>

• Details of the canned cycle

The correspondence between the G codes and this CNC tape format or FS10/11 tape format is listed below. This list also provides notes on dwell during a canned cycle.

No. G□□□ (Use) This CNC command format
1. G81 (Drilling cycle)G83 (G87) P0 <Q not specified>
 No dwelling
2. G82 (Drilling cycle)G83 (G87) P <Q not specified>
 The tool always dwells at the bottom of the hole.
3. G83 (Peck drilling cycle) G83 (G87) <Type B>
 If the block contains a P command, the tool dwells at the bottom of the hole.
4. G83.1 (Peck drilling cycle) G83 (G87) <Type A>
 If the block contains a P command, the tool dwells at the bottom of the hole.
 Note) Either type A or B is selected according to bit 2 (RTR) of parameter No. 5101.
5. G84 (Tapping) G84 (G88) I
 If the block contains a P command, the tool dwells after it reaches the bottom of the hole and after it is retracted to the R position.
6. G84.2 (Rigid tapping) M29 S_ G84 (G88)
 If the block contains a P command, the tool dwells before the spindle starts rotating in reverse at the bottom of the hole and before it starts rotating in the normal direction at the R position.
7. G85 (Boring cycle) G85 (G89) P0
 No dwelling
8. G89 (Boring cycle) G85 (G89) P_
 The tool always dwells at the bottom of the hole.

• Clearance d for G83 and G83.1

Parameter No. 5114 determines clearance d for G83 and G83.1.
• **Dwell with G83 and G83.1**

For Series 10/11–T, G83 or G83.1 does not cause the tool to dwell. For the FS10/11 tape format, the tool dwells at the bottom of the hole only if the block contains a P address.

• **Dwelling with G84 and G84.2**

In Series 10/11–T, G84/G84.2 causes the tool to dwell before the spindle starts rotating in either the normal or reverse direction, according to the corresponding parameter setting. For the FS10/11 tape format, when the block contains a P address, the tool dwells at the bottom of the hole and at the R position before the spindle starts rotating either in the normal or reverse direction.

• **Rigid tapping**

For the FS10/11 tape format, rigid tapping can be specified by using the methods listed below:

<table>
<thead>
<tr>
<th>Format</th>
<th>Condition (parameter), comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>G84.2 X_ Z_ R_ ...S**** ;</td>
<td>Setting (F10/F11) = 1</td>
</tr>
<tr>
<td>S**** ; G84.2 X_ Z_ R_ ;</td>
<td></td>
</tr>
<tr>
<td>M29 S**** ; G84 X_ Z_ R_ ;</td>
<td>* Common to Series 21 format</td>
</tr>
<tr>
<td>M29 S**** G84 X_ Z_ R_ ;</td>
<td></td>
</tr>
<tr>
<td>G84 X_ Z_ R_ S**** ;</td>
<td>G84 is made a G code for rigid tapping. Bit 0 (G84) of parameter No. 5200 = 1</td>
</tr>
<tr>
<td>S**** ; G84 X_ Z_ R_ ;</td>
<td>* Common to Series 16 format</td>
</tr>
</tbody>
</table>

• **Diameter or radius programming**

Specifying 1 for bit 7 (RDI) of parameter No. 5102 causes the canned cycle R command diameter or radius programming mode in the FS10/11 tape format to match the diameter or radius programming mode for the drilling axis.

• **Disabling the Series 10/11 format**

Specifying bit 3 (F16) of parameter No. 5102 disables the FS10/11 tape format. This applies only to the canned drilling cycle. However, the number of repetitions must be specified by using the L address.

CAUTION

Setting bit 3 (F16) of parameter No. 5102 to 1 overrides bits 6 (RAB) and 7 (RDI) of parameter No. 5102; both settings are assumed to be 0.

Limitations

• **C–axis as the drilling axis**

It is impossible to use the C–axis (the third axis) as a drilling axis. So, specifying G18 (ZX plane) generates P/S alarm No. 28 (plane selection command error).

• **Clamping the C–axis**

For the FS10/11 tape format, it is impossible to specify an M code for clamping the C–axis.
18 FUNCTIONS FOR HIGH SPEED CUTTING
18. FUNCTIONS FOR HIGH SPEED CUTTING

18.1 REMOTE BUFFER

The remote buffer function enables a large amount of data to be supplied to the CNC continuously and at high speed, by connecting a host computer or input/output device via a serial interface.

Using a remote buffer for online connection to the host computer enables high-speed, highly reliable DNC operation. Remote buffers include high-speed remote buffer A, which enables high-speed machining using binary data. For details of the remote buffer specifications, refer to the Supplement for Remote Buffer Description (B-61802E-1).
18.2 HIGH–SPEED REMOTE BUFFER A (G05)

After a block containing only G05 is specified in normal NC format, operation can be performed by specifying movement data in the format described below. Once zero has been specified as the amount of travel for each axis, normal NC command format is restored.

Format

- Turning binary input operation on: G05;
- Turning binary input operation off: 0 for amount of travel for each axis
- Data format for binary input operation

Data for binary input operation is specified in a format where the amount of travel per unit time (2 bytes) for each axis is specified sequentially from the first axis to the Nth axis, after which a check byte (1 byte) follows (the data length for a single block is \(2 \times N + 1\) bytes).

All data is represented in binary.

Explanations

- **Selecting the unit time**

The unit time (ms) can be specified using bits 4, 5, and 6 (IT0, IT1, and IT2) of parameter No. 7501.
• **Data for amount of travel**

Specify the amount of travel for each axis in the following units (specify a two's complement for a negative amount).

<table>
<thead>
<tr>
<th>Increment system</th>
<th>IS–B</th>
<th>IS–C</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Millimeter machine</td>
<td>0.001</td>
<td>0.0001</td>
<td>mm</td>
</tr>
<tr>
<td>Inch machine</td>
<td>0.0001</td>
<td>0.00001</td>
<td>inch</td>
</tr>
</tbody>
</table>

The format of each data word is as follows. Use the bits indicated by * to specify the amount of travel per unit time.

```
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
* * * * * * 0 * * * * * * 0
```

Example: When the amount of travel per unit time is 700 um (millimeter machine, IS–B)

```
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 1 0 1 0 0 1 1 1 1 0 0 0
```

• **Check byte**

The check byte shall indicate the sum of the \([2 \times N]\) bytes, not including the check byte, in byte units, with any overflow exceeding eight bits discarded.

• **Transfer rate**

The CNC outputs data of \([2 \times N + 1]\) bytes (N: number of axes) from the remote buffer every unit time, specified with the parameters. To ensure that the CNC can continue machining without stopping halfway, the minimum transfer baud rate between the host and remote buffer is as follows:

\[
(2 \times N + 1) \times \frac{11}{T} \times 1000 \quad (T: \text{unit time})
\]

• **Tool nose radius compensation**

If G05 is specified in tool nose radius compensation mode, a P/S alarm (No. 178) is issued.

• **Feed hold and interlock**

Feed hold and interlock are valid in binary input operation mode.

• **Mirror image**

Mirror image (programmable mirror image or setting image) cannot be turned on or off in G05 mode.

• **Acceleration/deceleration type**

Exponential acceleration/deceleration (with the time constant specified with parameter No. 1622) in cutting feed mode is used at the start and end of movement in binary input operation mode.

Limitations

• **Modal command**

In binary input operation mode, only linear interpolation based on the specified data format is executed (equivalent to an incremental command for linear interpolation).

• **Invalid functions**

Single block stop, feedrate override, and maximum cutting feedrate clamp are invalid in binary input operation mode. The program restart function cannot be used. Miscellaneous functions are also invalid.

• **Registration in memory**

A program cannot be registered in memory in binary input operation mode.
During high-speed machining, the distribution processing status is monitored. When distribution processing terminates, P/S alarm No. 000 and P/S alarm No. 179 are issued upon completion of the high-speed machining command (according to the setting of ITPDL (bit 7 of parameter No. 7501)).

These P/S alarms can be canceled only by turning off the CNC power.

Explanations

- **High-speed machining command**
- **Distribution processing termination**

Alarm

<table>
<thead>
<tr>
<th>Number</th>
<th>Message</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>PLEASE TURN OFF POWER</td>
<td>During high-speed machining, distribution processing was terminated. Related parameters: Remote buffer transfer baud rate (parameter No. 133)</td>
</tr>
<tr>
<td>179</td>
<td>PARAM. (NO. 7510) SETTING ERROR</td>
<td>Number of controlled axes in high-speed machining (parameter No. 7510) High-speed axis selection during high-speed machining (bit 0 of parameter No. 7510)</td>
</tr>
</tbody>
</table>
19

AXIS CONTROL FUNCTION
19.1 POLYGONAL TURNING

Polygonal turning means machining a polygonal figure by rotating the workpiece and tool at a certain ratio.

By changing conditions which are rotation ratio of workpiece and tool and number of cutters, the machining figure can be changed to a square or hexagon. The Machining time can be reduced as compared with polygonal figure machining using C and X axes of the polar coordinate. The machined figure however, is not exactly polygonal. Generally, polygonal turning is used for the heads of square and/or hexagon bolts or hexagon nuts.

Format

G51.2(G251) \(P _Q_ \)

- **P:** Rotation ratio of spindle and Y axis
- **Q:** Specify range: Integer 1 to 9 for both P and Q
- When Q is a positive value, Y axis makes positive rotation.
- When Q is a negative value, Y axis makes negative rotation.
Explanations

Tool rotation for polygonal turning is controlled by CNC controlled axis. This rotary axis of tool is called Y axis in the following description. The Y axis is controlled by G51.2 command, so that the rotation speeds of the workpiece mounted on the spindle (previously specified by S-command) and the tool become the specified ratio.

(Example) Rotation ratio of workpiece (spindle) to Y axis is 1:2, and the Y axis makes positive rotation.

G51.2P1Q2;

When simultaneous start is specified by G51.2, the one-rotation signal sent from the position codes set on the spindle is detected. After this detection, the Y axis rotation is controlled according to the rotation ratio (P:Q) while synchronizing with the spindle speed. Namely, the Y axis rotation is controlled so that the spindle and Y axis stand in a relation of P:Q. This relation will be maintained until the polygonal turning cancel command is executed (G50.2 or reset operation). The direction of Y axis rotation is determined by the code Q and not affected by the direction of the position coder rotation.

Synchronization of the spindle and Y axis is canceled by the following command:

G50.2(G250);

When G50.2 is specified, synchronization of the spindle and Y axis is canceled and the Y axis stops.

This synchronization is also canceled in the following cases:

i) Power off
ii) Emergency stop
iii) Servo alarm
iv) Reset (external reset signal ERS, reset/rewind signal RRW, and RESET key on the MDI panel)
v) Occurrence of P/S alarm Nos. 217 to 221

Example

```
G00X100.0 Z20.0 S1000.0 M03;
G51.2P1Q2;
G01X80.0 F10.0;
G04X2.0;
G00X100.0;
G50.2;
M05;
```

Workpiece rotation speed 1000min⁻¹
Tool rotation start (tool rotation speed 2000min⁻¹)
X axis infeed
X axis escape
Tool rotation stop
Spindle stop

Specify **G50.2** and **G51.2** always in a single block.
The principle of polygonal turning is explained below. In the figure below the radius of tool and workpiece are A and B, and the angular speeds of tool and workpiece are α and β. The origin of XY cartesian coordinates is assumed to be the center of the workpiece.

Simplifying the explanation, consider that the tool center exists at the position Po (A,0) on the workpiece periphery, and the tool nose starts from position Pto(A–B, 0).

\[
\begin{align*}
X_t &= A \cos \alpha t - B \cos (\beta - \alpha) t \\
Y_t &= A \sin \alpha t + B \sin (\beta - \alpha) t
\end{align*}
\]

(Equation 1)

Assuming that the rotation ratio of workpiece to tool is 1:2, namely, \(\beta = 2\alpha \), equation 1 is modified as follows

\[
\begin{align*}
X_t &= A \cos \alpha t - B \cos \alpha t \\
Y_t &= A \sin \alpha t + B \sin \alpha t
\end{align*}
\]

(Equation 2)

Equation 2 indicates that the tool nose path draws an ellipse with longer diameter A+B and shorter diameter A–B.
Then consider the case when one tool is set at 180° symmetrical positions, for a total of two. It is seen that a square can be machined with these tools as shown below.

![Diagram of a square machined with two tools]

If three tools are set at every 120°, the machining figure will be a hexagon as shown below.

![Diagram of a hexagon machined with three tools]

WARNING
For the maximum rotational speed of the tool, refer to the manual supplied by the machine manufacturer. Do not specify a spindle speed that will exceed the maximum speed allowed for the tool or a ratio of the tool speed to the spindle speed by which the maximum tool speed will be exceeded.
WARNING
1 The starting point of the threading process becomes inconsistent when performed during synchronous operation.
 Cancel the synchronizing by executing G50.2 when threading.
2 The following signals become either valid or invalid in relation to the Y axis in synchronous operation.
 Valid signals in relation to Y axis:
 machine lock
 servo off
 Invalid signals in relation to Y axis:
 feed hold
 interlock
 override
 dry run
 (During a dry run, however, there is no wait for a revolution signal in the G51.2 block.)

NOTE
1 The Y axis, unlike the other controlled axes, cannot be specified a move command as Y—. That is, an axis move command is unnecessary for the Y axis. Because, when G51.2 (polygonal turning mode) is specified, it is only necessary to control the Y axis so that the tool rotates at a certain ratio to the spindle rotation speed.
 However, only the reference point return command (G28V0;) can be specified since the Y axis rotation is stopped at the unstable position when G50.2 (polygonal turning mode cancel command) is specified. If the tool rotation start position is unstable, a problem may occur, for example, when the same figure is machined with a finishing tool after once machined with a roughing tool.
 Specification of G28V0; for Y axis is equal to the orientation command for the spindle. In the other axes, unlike the manual reference point return, G28 usually makes reference point return without detecting the deceleration limit. However, with G28V0;, for the Y axis, reference point return is executed by detecting the deceleration limit, like manual reference point return.
 To machine a workpiece into the same figure as the previous one, the tool and the spindle must be in the same position as the previous time when the tool starts rotating. The tool is set start rotation when the one—rotation signal of the position coder set on the spindle is detected.
2 The Y axis used to control tool rotation for polygonal turning uses the 4th axis. However, by setting parameters, (No.7610) the 3rd axis may also be used. In this case, that axis must be named C axis.
3 Among the position display of the Y axis, the display for the machine coordinate value (MECHINE) will change from a range of 0 to the parameter setting (the amount of movement per revolution) as the Y axis moves.
 Absolute or relative coordinate values are not renewed.
4 An absolute position detector cannot be set on the Y axis.
5 Manual continuous feed or handle feed is invalid when the Y axis is in synchronous operation.
6 The Y axis in synchronous operation is not included in the number of axis controlled simultaneously.
19.2
ROTARY AXIS
ROLL–OVER

Explanations

The roll–over function prevents coordinates for the rotation axis from overflowing. The roll–over function is enabled by setting bit 0 of parameter 1008 to 1.

For an incremental command, the tool moves the angle specified in the command. For an absolute command, the coordinates after the tool has moved are values set in parameter No. 1260, and rounded by the angle corresponding to one rotation. The tool moves in the direction in which the final coordinates are closest when bit 1 (ROAx) of parameter No. 1008 is set to 0. Displayed values for relative coordinates are also rounded by the angle corresponding to one rotation when bit 2 (ROAx) of parameter No. 1008 is set to 1.

Examples

Assume that axis C is the rotating axis and that the amount of movement per rotation is 360.000 (parameter No. 1260 = 360000). When the following program is executed using the roll–over function of the rotating axis, the axis moves as shown below.

<table>
<thead>
<tr>
<th>C0 ;</th>
<th>Sequence number</th>
<th>Actual movement value</th>
<th>Absolute coordinate value after movement end</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N1 C-150.0 ;</td>
<td>N1</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td>N2 C540.0 ;</td>
<td>N2</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>N3 C-620.0 ;</td>
<td>N3</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>N4 H380.0 ;</td>
<td>N4</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>N5 H-840.0 ;</td>
<td>N5</td>
<td>0</td>
</tr>
</tbody>
</table>

Relative coordinate value: –720°, –360°, –0°, 360°
Absolute coordinate value: –0°, –0°, –0°, –0°

![Diagram of axis movement](image)
19.3 SIMPLE SYNCHRONIZATION CONTROL

The simple synchronization control function allows synchronous and normal operations on two specified axes to be switched, according to an input signal from the machine. For a machine with two tool posts that can be independently driven with different controlled axes, this function enables the operations described below.

This section describes the operations of a machine having two tool posts, both of which can be independently operated along the X-axis and Y-axis. If your machine uses other axes for the same purpose, substitute the corresponding axis names for X and Y.

Fig. 19.3 Sample Axis Configuration of a Machine on which the Simple Synchronization Control Function is Executed

Explanations

• Synchronous operation

Synchronous operation is possible on a machine having two tool posts. In synchronous operation mode, movement on one axis can be synchronized with movement specified for another axis. The move command can be specified for one of the two axes, which is referred to as the master axis. The other axis, for referred synchronization with the master axis is maintained, is referred to as the slave axis. If the master axis is X and the slave axis is Y, synchronous operation on the X-axis (master axis) and Y-axis (slave axis) are performed according to Xxxxx commands issued for the master axis.

In synchronous operation mode, a move command specified for the master axis results in simultaneous operation of the servo motors of the master and slave axes.

In this mode, synchronization error compensation is not performed. That is, any positioning error between the two servo motors is not monitored, nor is the servo motor of the slave axis adjusted to minimize any error. No synchronization error alarm is output. Automatic operations can be synchronized, but manual operations cannot.

• Normal operation

Normal operation is performed when different workpieces are machined on different tables. As with normal CNC control, move commands for the master and slave axes are specified with the addresses of those axes (X and Y). Move commands for the two axes can be specified in an identical block.

1 According to the Xxxxx command programmed for the master axis, movement is performed along the X-axis, as in normal mode.
2 According to the Yyyyy command programmed for the slave axis, movement is performed along the Y-axis, as in normal mode.

3 According to the Xxxxx Yyyyy command, simultaneous movements are performed along both the X-axis and Y-axis, as in normal mode. Both automatic and manual operations can be controlled, as in normal CNC control.

- **Switching synchronous and normal operations**
 For details of how to switch the synchronous and normal operations, refer to the manual supplied by the machine tool builder.

- **Automatic reference position return**
 If a command for automatic reference position return (G28), or return to the second, third, or fourth reference position (G30), is issued in synchronous operation mode, a reference position return is performed for the X-axis, and an identical movement is performed for the Y-axis. If this Y-axis movement agrees with a return to the reference position on the Y-axis, a lamp indicating that reference position return has been completed for the Y-axis also lights. It is recommended, however, that G28 and G30 be specified in normal operation mode.

- **Checking automatic reference position return**
 If a command for checking automatic reference position return (G27) is issued in synchronous operation mode, identical movements are performed for the X-axis and Y-axis. If these X-axis and Y-axis movements correspond to returns to the reference positions on the X-axis and Y-axis, the lamps indicating that reference position return has been completed for the X-axis and Y-axis light. If not, an alarm is output. It is recommended, however, that G27 be specified in normal operation mode.

- **Slave axis command**
 If a move command is specified for the slave axis in synchronous operation mode, P/S alarm 213 is output.

- **Master and slave axes**
 The master axis is defined in parameter 8311. The slave axis is specified by an external signal.

Limitations

- **Coordinate system setting and tool compensation**
 If coordinate system setting or tool compensation causing a shift in the coordinate system is performed in synchronous operation mode, P/S alarm 214 is output.

- **External deceleration, interlock, machine lock**
 In synchronous operation mode, the signal for external deceleration, interlock, or machine lock of the master axis only is valid. The corresponding slave axis signal is ignored.

- **Pitch error compensation**
 Pitch error compensation and backlash compensation are performed separately for the master and slave axes.

- **Manual absolute switch**
 In synchronous operation mode, the manual absolute switch must be set to on (ABS must be set to 1). If the switch is set to off, the correct slave axis movement may not be made.

- **Manual operation**
 Manual operations cannot be synchronized.
19.4 B–AXIS CONTROL
(G100, G101, G102, G103, G110)

This function sets an axis (B–axis) independent of the basic controlled axes X and Z and allows drilling, boring, or other machining along the B–axis, in parallel with the operations for the basic controlled axes.

Format

• Registering operation programs

G101–G100	Starts registering the first program.
G102–G100	Starts registering the second program.
G103–G100	Starts registering the third program.
G100	Ends registering of the programs.

Three operations (programs) on the B–axis can be registered. (In two–path control mode, three programs can be registered for each tool post.) The B–axis operation program must be specified in the blocks between G101, G102, or G103 and G100, allowing it to be discriminated from the normal NC program. The registered operation is started upon executing the corresponding M code, described below.

O1234 ;
;
G101 ;
;
G100 ;
;
M30 ;

Note) In the block of G101, G102, G103, or G100, specify no other codes.
• Command used to start the operation

To start an operation, the miscellaneous functions (M**) specified in parameters 8251 to 8253 are used.

Parameter 8251:
M code used to start operation of the first program
Parameter 8252:
M code used to start operation of the second program
Parameter 8253:
M code used to start operation of the third program

O1234 ;
:
M** ;
:
M30 ;

Example
01234 ;
G50 X100. Z200. ;
G101 ;
G00 B10. ;
M03 ;
G04 P2500 ;
G81 B20. R15. F500 ;
G28 ;
G100 ;
G00 X80. Z50. ;
G01 X45. F1000 ;
:
G00 X10. ;
M** ;
G01 Z30. F300 ;
:
M30 ;

1 to 3 : Specify the B-axis operation program in blocks between G101, G102, or G103 and G100. The program is registered in program memory.

2 : Starts executing the B-axis operation registered with 1 to 3 above. In subsequent blocks, the normal NC operation and the B-axis operation are executed in parallel. An M code of the miscellaneous function is used to start the B-axis operation. The M code, used to start the operation, is specified in parameters 8251 to 8253.

• Single-motion operation

G110 [operation command]:
A single-motion operation for the B-axis can be specified and executed as shown above. Such an operation need not be registered as a special (first to third) program. Nor does it need to be by a special command, as described above.
The following 13 G codes, and the M, S, and T codes of the miscellaneous functions, can be used in a B–axis operation program:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G00</td>
<td>Positioning (rapid traverse)</td>
</tr>
<tr>
<td>G01</td>
<td>Linear interpolation (cutting feed)</td>
</tr>
<tr>
<td>G04</td>
<td>Dwell</td>
</tr>
<tr>
<td>G28</td>
<td>Reference position return, automatic coordinate system setting</td>
</tr>
<tr>
<td>G80</td>
<td>Canned cycle, cancel</td>
</tr>
<tr>
<td>G81</td>
<td>Drilling cycle, spot drilling</td>
</tr>
<tr>
<td>G82</td>
<td>Drilling cycle, counterboring</td>
</tr>
<tr>
<td>G83</td>
<td>Peck drilling cycle</td>
</tr>
<tr>
<td>G84</td>
<td>Tapping cycle</td>
</tr>
<tr>
<td>G85</td>
<td>Boring cycle</td>
</tr>
<tr>
<td>G86</td>
<td>Boring cycle</td>
</tr>
<tr>
<td>G98</td>
<td>Feed per minute</td>
</tr>
<tr>
<td>G99</td>
<td>Feed per rotation</td>
</tr>
<tr>
<td>M**</td>
<td>Auxiliary function</td>
</tr>
<tr>
<td>S**</td>
<td>Auxiliary function</td>
</tr>
<tr>
<td>T**</td>
<td>Auxiliary function, tool offset</td>
</tr>
</tbody>
</table>

G28 (reference position return)
Unlike the normal G28 cycle, the G28 cycle for a B–axis operation does not include intermediate point processing. For example, the following cannot be specified:

G28 B99.9;

G80 to G86 (canned drilling cycle)
Of the canned drilling cycles supported by the Series 21i–MB (machining center series CNC), those cycles equivalent to G80 to G86 can be executed.

Data can be specified in the same way as for the Series 21i–MB, except for the following points:

1. The drilling position is not specified with X and Y.
2. The distance from point R to the bottom of the hole is specified with B.
3. All operations are executed in the initial level return mode.
4. The repetition count (K) cannot be specified.
5. In canned cycle mode, point R must be specified. (If point R is omitted, P/S alarm No. 5036 is output.)
6. The drilling start point (d) for the G83 (peck drilling) cycle is specified with parameter 8258.
G98, G99 (feed per minute, feed per rotation)
The MDF bit (bit 2 of parameter 8241) specifies an initial continuous–state G code for G110, or the G code to start registration of the operation program (G101, G102, G103).
When the MDF bit is set to 0, the initial continuous–state code is G98.
When the MDF bit is set to 1, the initial continuous–state code is G99.
Example)
When MDF is set to 0
G110 B100. F1000. ; 1000 mm/min
G110 G99 B100. F1 ; 1 mm/rev

M, S, and T codes (auxiliary functions)
According to a numeric value subsequent to address M, S, or T, the binary code and strobe signal are sent to the machine. The codes and signals for addresses M, S, and T are all output to an identical interface and can be used to control power–on or power–off of the machine. For this purpose, the axis control interface of the PMC is used, which differs from that used for the miscellaneous functions for the normal NC program. The following M codes, used to control the spindle, are automatically output during the G84 (tapping) or G86 (boring) cycle:
M03: Forward spindle rotation
M04: Reverse spindle rotation
M05: Spindle stop
T** to T(** + 9), where ** is the number specified in parameter 8257, are used as the codes of the auxiliary functions to adjust the tool offset.
Example)
T50 to T59 if parameter 8257 is set to 50
1. An M, S, or T code must not be specified in a block containing another move command. The M, S, and T codes must not be specified in an identical block.
2. Usually, normal NC operation and B–axis operation are independent of each other. Synchronization between operations can be established by coordinating the miscellaneous functions of the normal NC program and B–axis operation program.
(Normal NC operation) (Registered B–axis operation)
: :
M11 ; G00 B111 ;
G01 X999 ; G01 B222 ;
G28 Z777 ; G28 ;
M50 ; M50 ;
G00 X666 ; G81 B444 R111 F222 ;
: :
Upon receiving M50 of both the normal NC program and the B–axis program, the PMC ladder outputs the completion signals (FIN) for the two miscellaneous functions. G00 X666 of the normal NC program and G81 B444 R111 F222 of the B–axis program are executed simultaneously.

Custom macro
Custom macro variables (local variables, common variables, system variables #****) can be used in an operation program between G101, G102, or G103 and G100.
1. The value of the macro variable is calculated not from the data existing upon execution of the B–axis operation, but from the data existing at registration of the operation program.

2. An instruction that causes a branch to a location beyond the range of G101, G102, or G103 to G100 is processed without being checked.

Operation program

When a new operation program is registered, the previous operation program is automatically deleted.

If an error is detected in an operation program to be registered, the program is initialized but is not registered.

Modal

In the same way as a normal NC program, the B–axis operation program can use the following as modal data: modal G codes, F codes, and P, Q, and F codes in the canned cycle. These codes do not affect the modal information of the normal NC program. When a B–axis operation program is started (by G101, G102, or G103), the initial modal data is set for the program. It is not affected by the previous modal information.

Example)

```
G01 X10. F1000 ;       1
G101 (G102, G103) ;     2
B10. ;                  3
G01 B–10. F500 ;        4
G100 ;                  5
X–10. ;                 6

:                          
```

Irrespective of the modal information for normal operation (G01 specified in block), block 3 specifies G00 if the MDG bit (bit 1 of parameter 8241) is set to 0, or G01 if the MDG bit is set to 1.

Block 6 causes movement with F1000, specified in block 1.

Operation start command

The MST bit (bit 7 of parameter 8240) specifies the method used to start the B–axis operation as described below:

If the MST bit is set to 1, the B–axis operation is started when the M code to start the operation is executed.

If the MST bit is set to 0, the B–axis operation is started when the M code used to start the operation is executed and the PMC outputs the miscellaneous function completion signal (FIN).

Up to five M codes for starting the programs can be stored. The programs corresponding to these M codes are executed in succession. (In two–path control mode, up to five codes can be stored for each tool post.)
Example)
When the first, second, and third programs are started by M40, M41, and M42, respectively
O1234. ;
;
;
M40 ; M code for starting the first program
M41 ; M code for starting the second program
M42 ; M code for starting the third program
M40 ; M code for starting the first program
M41 ; M code for starting the second program
;
;
M30 ;

As M41 is specified while the program started by M40 is being executed, the second program is automatically started upon termination of the first program.
M42, M40, and M41, specified during execution of the first program, are stored such that the corresponding programs are executed in the same order as that in which the M codes are specified.
If six or more M codes for starting the programs are specified while a program is being executed, P/S alarm 5038 is output.

- **Specifying absolute or incremental mode**

 The amount of travel along the B–axis can be specified in either absolute or incremental mode. In absolute mode, the end point of travel along the B–axis is programmed. In incremental mode, the amount of travel along the B–axis is programmed directly.

 The ABS bit (bit 6 of parameter 8240) is used to set absolute or incremental mode. When the ABS bit is set to 1, absolute mode is selected. When the ABS bit is set to 0, incremental mode is selected. The mode is specified with this parameter when the program is registered.

- **Specifying a tool offset**

 The T**; command shifts the end point of the specified B–axis travel, in either the positive or negative direction, by the amount specified with the B–axis offset screen. If this function is used to set the difference between the programmed tool position and actual tool position in machining, the program need not be modified to correct the tool position.

 The value specified with parameter 8257 is assigned to the auxiliary function to cancel the offset. The subsequent nine numbers are assigned to the tool offset functions. These auxiliary function numbers are displayed on the B–axis offset screen. For details, see "OPERATION."

- **Single–motion operation**

 If a G110 block is specified, a single–motion operation along the B–axis can be specified and executed. In single–motion operation mode, a single block results in a single operation. The single–motion operation is executed immediately provided if it is specified before the B–axis operation is started. If the operation is specified while a registered program is being executed, the operation is executed once that program has terminated.

 After the specified single–motion operation has been executed, the next block is executed.
An operation program is registered in program memory as a series of different blocks of the move, dwell, auxiliary, and other functions. Program memory can hold a desired number of blocks, up to a maximum of 65535 blocks for each program. If the program memory contains no free space when an attempt is made to register a B-axis program, P/S alarm 5033 is output. Six blocks require 80 characters of program memory. A canned cycle (G81 to G86) is also registered as a series of blocks, such as travel and dwell.

The entire program memory is backed up by battery. The programs registered in program memory are thus retained even after the system power is turned off. After turning the system power on, the operation can be started simply by specifying the M code for starting the program.

Example:

```
G101 ;
G00 B10. ; ............... One block
G04 P1500 ; ............... One block
G81 B20. R50. F600 ; ........ Three blocks
G28 ; ............... One block
M15 ; ............... One block
G100 ;
```

(The Total 7 blocks)

Reset

When the NC is reset by pressing the MDI reset key or by the issue of an external reset signal, reset and rewind signal, or emergency stop, B-axis control is also reset. The PMC interface signal can reset only B-axis control. For details, refer to the manual supplied by the machine tool manufacturer.

PMC–controlled axis

A B-axis operation can be executed only when the B-axis can be controlled by the PMC. For details, refer to the manual supplied by the machine tool builder.

Limitations

Single–motion operation

1. Only a single–motion operation can be specified with G110.


   ```
   G110 G00 B100. ; ............... OK
   G110 G28 ; ............... OK
   G110 G81 B100. R150.0 F100 ; ... P/S alarm No.5034
   ```

2. A canned cycle (G81 to G86), and other operations containing multiple motions, cannot be specified with G110. If an inhibited operation is specified, P/S alarm No.5034 is output.

3. Modal information specified with G110 does not affect the subsequent blocks. In the G110 block, the initial modal value specified at the start of the operation becomes valid, irrespective of the modal information specified the previous blocks.
Example)
When the MDG bit (bit 1 of parameter 8241) is set to 1 and the
MDF bit (bit 2 of parameter 8241) is set to 1
G98 G00 X100. F1000 ; (1)
G110 B200. F2 ; (2)
X200. ; (3)
G01 X200. ; (4)

Block (2) instigates cutting feed (G01) at 2.0 mm/rev (G99).
Block (3) instigates rapid traverse (G00).
Block (4) instigates cutting feed (G01) at 1000 mm/min (G98).

4. During tool–tip radius compensation, two or more G110 blocks cannot
be specified in succession. If such blocks are specified in succession,
P/S alarm No. 504 is output. To specify two or more G110 blocks in
succession for a B–axis operation, register the blocks as a program
with G101, G102, or G103 and G100.

Examples
• Absolute or incremental

<table>
<thead>
<tr>
<th>Absolute or incremental mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>(1)</td>
</tr>
<tr>
<td>(200)</td>
</tr>
<tr>
<td>(100)</td>
</tr>
</tbody>
</table>

(. . . . Rapid traverse | Cutting feed | Dwell | (*** Absolute value

Incremental mode | Absolute mode
G101 (G012, 103) ; | G101 (G012, G103) ;
(1) G01 B200. F100 ; | (1) G01 B200. F100 ;
(2) G82 B100. R150. P5000 F200 ; | (2) G82 B450. R350. P5000 F200 ;
(4) G00 B–100. ; | (4) G00 B100. ;
G100 ; | G100 ;
:: ; |
M** ; |
:: ; |
M30 ; |
M30 ; |
• Tool offset

Example)
When parameter 8257 is set to 50
Auxiliary function used to cancel the offset: T50
Auxiliary functions used to adjust a tool offset: T51 to T59

(Absolute mode)

(Incremental mode)

Program
G101 (G012, G103) ;
(1) G01 B10. F100 ;
(2) T51 ;
(3) G00 B20. ;
(4) T52 ;
(5) B0. ;
(6) T50 ;
G100 ;
::
M**;
::

Where the offset of T51 is 10.0 and the offset of T52 is 5.0
19.5 ANGULAR AXIS CONTROL / ARBITRARY ANGULAR AXIS CONTROL

When the angular axis makes an angle other than 90° with the perpendicular axis, the angular axis control function controls the distance traveled along each axis according to the inclination angle. For the ordinary angular axis control function, the X-axis is always used as the angular axis and the Z-axis is always used as the perpendicular axis. For angular axis control B, however, arbitrary axes can be specified as the angular and perpendicular axes, by specifying parameters accordingly.

A program, when created, assumes that the angular axis and perpendicular axis intersect at right angles. However, the actual distance traveled is controlled according to an inclination angle.

Explanations

When the angular axis is the X-axis and the perpendicular axis is the Z-axis, the amount of travel along each axis is controlled according to the formulas shown below.

The distance to be traveled along the X-axis is determined by the following formula:

\[X_a = \frac{X_p}{\cos \theta} \]

The distance traveled along the Z-axis is corrected by the inclination of the X-axis, and is determined by the following formula:

\[Z_a = Z_p - \frac{1}{2} X_p \tan \theta \]

The speed component along the X-axis of feed rate is determined by the following formula:

\[F_a = \frac{F_p}{\cos \theta} \]

\(X_a, Z_a, F_a \): Actual distance and speed
\(X_p, Z_p, F_p \): Programmed distance and speed

● Method of use

The angular and perpendicular axes to which angular axis control is to be applied must be specified beforehand, using parameters (No. 8211 and 8212).

Parameter AAC (No. 8200#0) enables or disables the inclined axis control function. If the function is enabled, the distance traveled along each axis is controlled according to an inclination angle (No. 8210).

Parameter AZR (No. 8200#2) enables angular axis manual reference point return only with a distance along the angular axis.

If perpendicular/angular axis control disable signal NOZAGC has been set to 1, the angular axis control function is enabled only for the angular axis. In such a case, the move command for the angular axis is converted to angular coordinates. The perpendicular axis is not affected by the move command for the angular axis.
• **Absolute and relative position display**

An absolute and a relative position are indicated in the programmed Cartesian coordinate system. Machine position display

• **Machine position display**

A machine position indication is provided in the machine coordinate system where an actual movement is taking place according to an inclination angle. However, when inch/metric conversion is performed, a position is indicated which incorporates inch/metric conversion applied to the results of inclination angle operation.

WARNING

1. After inclined axis control parameter setting, be sure to perform manual reference point return operation.
2. If bit 2 (AZR) of parameter No. 8200 has been set to 0, such that manual reference position return along the angular axis also causes movement along the perpendicular axis, once manual reference position return has been performed along the angular axis, also perform manual reference position return along the perpendicular axis.
3. Once the tool has been moved along the angular axis with perpendicular/angular axis control disable signal NOZAGC set to 1, manual reference position return must be performed.
4. Before attempting to manually move the tool along both the angular and perpendicular axes simultaneously, set perpendicular/angular axis control disable signal NOZAGC to 1.

NOTE

1. If an inclination angle close to 0° or ±90° is set, an error can occur. A range from ±20° to ±60° should be used.
2. Before a perpendicular axis reference point return check (G37) can be made, angular axis reference point return operation must be completed.
This function enables users to perform programming simply by extracting numeric data (pattern data) from a drawing and specifying the numerical values from the MDI panel. This eliminates the need for programming using an existing NC language.

With the aid of this function, a machine tool builder can prepare the program of a hole machining cycle (such as a boring cycle or tapping cycle) using the custom macro function, and can store it into the program memory. This cycle is assigned pattern names, such as BOR1, TAP3, and DRL2.

An operator can select a pattern from the menu of pattern names displayed on the screen. Data (pattern data) which is to be specified by the operator should be created in advance with variables in a drilling cycle. The operator can identify these variables using names such as DEPTH, RETURN RELIEF, FEED, MATERIAL or other pattern data names. The operator assigns values (pattern data) to these names.
20.1 DISPLAYING THE PATTERN MENU

Pressing the \[OFFSET\] key and \[MENU\] is displayed on the following pattern menu screen.

```
MENU : HOLE PATTERN          O0000 N00000
  1. BOLT HOLE
  2. GRID
  3. LINE ANGLE
  4. TAPPING
  5. DRILLING
  6. BORING
  7. POCKET
  8. PECK
  9. TEST PATRN
 10. BACK

> MDI **** *** ***           16:05:59
  [ MACRO ] [ MENU ] [ OPR ] [ ] [(OPRT)]
```

HOLE PATTERN :

This is the menu title. An arbitrary character string consisting of up to 12 characters can be specified.

BOLT HOLE :

This is the pattern name. An arbitrary character string consisting of up to 10 characters can be specified, including katakana.

The machine tool builder should specify the character strings for the menu title and pattern name using the custom macro, and load the character strings into program memory as a subprogram of program No. 9500.
Macro commands specifying the menu title

Menu title: \(C_1 \ C_2 \ C_3 \ C_4 \ C_5 \ C_6 \ C_7 \ C_8 \ C_9 \ C_{10} \ C_{11} \ C_{12} \)
\(C_1, C_2, \ldots, C_{12} \): Characters in the menu title (12 characters)

Macro instruction
\[
G65 \ H90 \ Pp \ Qq \ Rr \ Ii \ Jj \ Kk :
\]
- **H90**: Specifies the menu title
- **p**: Assume \(a_1 \) and \(a_2 \) to be the codes of characters \(C_1 \) and \(C_2 \). Then,
- **q**: Assume \(a_3 \) and \(a_4 \) to be the codes of characters \(C_3 \) and \(C_4 \). Then,
- **r**: Assume \(a_5 \) and \(a_6 \) to be the codes of characters \(C_5 \) and \(C_6 \). Then,
- **i**: Assume \(a_7 \) and \(a_8 \) to be the codes of characters \(C_7 \) and \(C_8 \). Then,
- **j**: Assume \(a_9 \) and \(a_{10} \) to be the codes of characters \(C_9 \) and \(C_{10} \). Then,
- **k**: Assume \(a_{11} \) and \(a_{12} \) to be the codes of characters \(C_{11} \) and \(C_{12} \). Then,

Example)
If the title of the menu is “HOLE PATTERN” then the macro instruction is as follows:
\[
G65 \ H90 \ P072079 \ Q076069 \ R032080
\]
\[
HOL E \ P
\]
\[
I065084 \ J084069 \ K082078 ;
\]
- **AT**: TE RN

For codes corresponding to these characters, refer to the Table 20.3(a) in II–20.3.
Macro instruction describing the pattern name

Pattern name: $C_1 \ C_2 \ C_3 \ C_4 \ C_5 \ C_6 \ C_7 \ C_8 \ C_9 \ C_{10}$
C_1, C_2, \ldots, C_{10}: Characters in the pattern name (10 characters)

Macro instruction
G65 H91 Pn Qq Rr Ii Jj Kk ;
H91: Specifies the menu title

- n: Specifies the menu No. of the pattern name
- $n = 1$ to 10
- q: Assume a_1 and a_2 to be the codes of characters C_1 and C_2. Then, $q = a_1 \cdot 10^3 + a_2$
- r: Assume a_3 and a_4 to be the codes of characters C_3 and C_4. Then, $r = a_3 \cdot 10^3 + a_4$
- i: Assume a_5 and a_6 to be the codes of characters C_5 and C_6. Then, $i = a_5 \cdot 10^3 + a_6$
- j: Assume a_7 and a_8 to be the codes of characters C_7 and C_8. Then, $j = a_7 \cdot 10^3 + a_8$
- k: Assume a_9 and a_{10} to be the codes of characters C_9 and C_{10}. Then, $k = a_9 \cdot 10^3 + a_{10}$

Example)
If the pattern name of menu No. 1 is “BOLT HOLE” then the macro instruction is as follows.
G65 H91 P1 Q066079 R076084 I032072 J079076 K069032 ;

For codes corresponding to these characters, refer to the Table 20.3(a) in II–20.3.

Pattern No. selection

To select a pattern from the pattern menu screen, enter the corresponding pattern No. The following is an example.

![Pattern No. selection example]

The selected pattern No. is assigned to system variable #5900. The custom macro of the selected pattern can be started by starting a fixed program (external program No. search) with an external signal then referring to the system variable #5900 in the program.

NOTE

If each characters of P, Q, R, I, J, and K are not specified in a macro instruction, two spaces are assigned to each omitted character.
Example

Custom macros for the menu title and hole pattern names.

```
MENU : HOLE PATTERN
  1. BOLT HOLE
  2. GRID
  3. LINE ANGLE
  4. TAPPING
  5. DRILLING
  6. BORING
  7. POCKET
  8. PECK
  9. TEST PATRN
 10. BACK
```

```
O9500 ;
N1G65 H90 P072 079 Q076 069 R032 080 I 065 084 J 084 069 K082 078 ; HOLE PATTERN
N2G65 H91 P1 Q066 079 R076 084 I 032 072 J 079 076 K069 032 ; 1.BOLT HOLE
N3G65 H91 P2 Q071 082 R073 068 ; 2.GRID
N4G65 H91 P3 Q076 073 R078 069 I 032 065 J 078 071 K076 069 ; 3.LINE ANGLE
N5G65 H91 P4 Q084 065 R080 080 I 073 078 J 071 032 ; 4.TAPPING
N6G65 H91 P5 Q068 082 R073 076 I 076 073 J 078 071 ; 5.DRILLING
N7G65 H91 P6 Q066079 R082073 I 078 071 ; 6.BORING
N8G65 H91 P7 Q080 079 R067 075 I 069 084 ; 7.POCKET
N9G65 H91 P8 Q080068 R067075 ; 8.PECK
N10G65 H91 P9 Q084 069 R083 084 I032 080 J065 084 K082 078 ; 9.TEST PATRN
N11G65 H91 P10 Q066 065 R067 0750 ; 10.BACK
N12M99 ;
```
When a pattern menu is selected, the necessary pattern data is displayed.

<table>
<thead>
<tr>
<th>NO.</th>
<th>NAME</th>
<th>DATA</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>TOOL</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>501</td>
<td>STANDARD X</td>
<td>0.000</td>
<td>*BOLT HOLE</td>
</tr>
<tr>
<td>502</td>
<td>STANDARD Y</td>
<td>0.000</td>
<td>CIRCLE*</td>
</tr>
<tr>
<td>503</td>
<td>RADIUS</td>
<td>0.000</td>
<td>SET PATTERN</td>
</tr>
<tr>
<td>504</td>
<td>S. ANGL</td>
<td>0.000</td>
<td>DATA TO VAR.</td>
</tr>
<tr>
<td>505</td>
<td>HOLES NO</td>
<td>0.000</td>
<td>NO.500–505.</td>
</tr>
<tr>
<td>506</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>507</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ACTUAL POSITION (RELATIVE)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>0.000</td>
<td>Y</td>
</tr>
<tr>
<td>Z</td>
<td>0.000</td>
<td></td>
</tr>
</tbody>
</table>

MDI ** *** ***** 16:05:59

[B] [MACRO] [MENU] [OPR] [(OPRT)]

BOLT HOLE

This is the pattern data title. A character string consisting of up to 12 characters can be set.

TOOL

This is the variable name. A character string consisting of up to 10 characters can be set.

BOLT HOLE CIRCLE

This is a comment statement. A character string can be displayed consisting of up to 8 lines, 12 characters per line.

(It is permissible to use katakana in a character string or line.)

The machine tool builder should program the character strings of pattern data title, pattern name, and variable name using the custom macro, and load them into the program memory as a subprogram whose No. is 9500 plus the pattern No. (O9501 to O9510).
Menu title : C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12
C1, C2, ..., C12 : Characters in the menu title (12 characters)

Macro instruction
G65 H92 Pn Qq Rr Ii Jj Kk;
H92 : Specifies the pattern name
p : Assume a1 and a2 to be the codes of characters C1 and C2. Then,
p = a1 \times 10^3 + a2
q : Assume a3 and a4 to be the codes of characters C3 and C4. Then,
q = a3 \times 10^3 + a4
r : Assume a5 and a6 to be the codes of characters C5 and C6. Then,
r = a5 \times 10^3 + a6
i : Assume a7 and a8 to be the codes of characters C7 and C8. Then,
i = a7 \times 10^3 + a8
j : Assume a9 and a10 to be the codes of characters C9 and C10. Then,
j = a9 \times 10^3 + a10
k : Assume a11 and a12 to be the codes of characters C11 and C12. Then,
k = a11 \times 10^3 + a12

Example)
Assume that the pattern data title is “BOLT HOLE.” The macro instruction is given as follows:
G65 H92 P066079 Q076084 R032072 I079076 J069032;

For codes corresponding to these characters, refer to the Table 20.3(a) in II–20.3.

Variable name : C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1, C2, ..., C10 : Characters in the variable name (10 characters)

Macro instruction
G65 H93 Pn Qq Rr Ii Jj Kk;
H93 : Specifies the variable name
n : Specifies the menu No. of the variable name
n = 1 to 10
q : Assume a1 and a2 to be the codes of characters C1 and C2. Then,
q = a1 \times 10^3 + a2
r : Assume a3 and a4 to be the codes of characters C3 and C4. Then,
r = a3 \times 10^3 + a4
i : Assume a5 and a6 to be the codes of characters C5 and C6. Then,
i = a5 \times 10^3 + a6
j : Assume a7 and a8 to be the codes of characters C7 and C8. Then,
j = a7 \times 10^3 + a8
k : Assume a9 and a10 to be the codes of characters C9 and C10. Then,
k = a9 \times 10^3 + a10

Example)
Assume that the variable name of the variable No. 503 is “RADIUS.” The macro instruction is given as follows:
G65 H93 P503 Q082065 R068073 I085083;

For codes corresponding to these characters, refer to the Table 20.3(a) in II–20.3.
Variable names can be assigned to 32 common variables #500 to #531, which are not cleared when the power is turned off.

NOTE

One comment line: C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12
C1, C2, . . . , C12 : Character string in one comment line (12 characters)

Macro instruction
G65 H94 Pn Qq Rr Ii Jj Kk ;
H94 : Specifies the comment

- p : Assume a1 and a2 to be the codes of characters C1 and C2. Then,
 \[p = a_1 \times 10^3 + a_2 \]
- q : Assume a3 and a4 to be the codes of characters C3 and C4. Then,
 \[q = a_3 \times 10^3 + a_4 \]
- r : Assume a5 and a6 to be the codes of characters C5 and C6. Then,
 \[r = a_5 \times 10^3 + a_6 \]
- i : Assume a7 and a8 to be the codes of characters C7 and C8. Then,
 \[i = a_7 \times 10^3 + a_8 \]
- j : Assume a9 and a10 to be the codes of characters C9 and C10. Then,
 \[j = a_9 \times 10^3 + a_{10} \]
- k : Assume a11 and a12 to be the codes of characters C11 and C12. Then,
 \[k = a_{11} \times 10^3 + a_{12} \]

A comment can be displayed in up to eight lines. The comment consists of the first line to the eighth line in the programmed sequence of G65 H94 for each line.

Example)
Assume that the comment is “BOLT HOLE.” The macro instruction is given as follows:
G65 H94 P042066 Q079076 R084032 I072079 J076069:
 *B OL T H O LE

For codes corresponding to these characters, refer to the Table 20.3(a) in II–20.3.
Examples

Macro instruction to describe a parameter title, the variable name, and a comment.

<table>
<thead>
<tr>
<th>NO.</th>
<th>NAME</th>
<th>DATA</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>TOOL</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>501</td>
<td>STD</td>
<td>0.000</td>
<td>*BOLT HOLE</td>
</tr>
<tr>
<td>502</td>
<td>STD</td>
<td>0.000</td>
<td>CIRCLE</td>
</tr>
<tr>
<td>503</td>
<td>RADI</td>
<td>0.000</td>
<td>SET PATTERN</td>
</tr>
<tr>
<td>504</td>
<td>S. ANG</td>
<td>0.000</td>
<td>DATA TO VAR.</td>
</tr>
<tr>
<td>505</td>
<td>HOLES</td>
<td>0.000</td>
<td>NO. 500–505.</td>
</tr>
<tr>
<td>506</td>
<td></td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>507</td>
<td></td>
<td>0.000</td>
<td></td>
</tr>
</tbody>
</table>

ACTUAL POSITION (RELATIVE)

X	0.000
Y	0.000
Z	0.000

MDI **** *** *** 16:05:59

O9501:

N1G65 H92 P066 079 Q076 084 R032 072 I079 076 J069 032 ; VAR : BOLT HOLE
N2G65 H93 P500 Q084 079 R079076 ; #500 TOOL
N3G65 H93 P501 Q075 073 R074 085 I078 032 J088 032 ; #501 KIJUN X
N4G65 H93 P502 Q075 073 R074 085 I078 032 J089 032 ; #502 KIJUN Y
N5G65 H93 P503 Q082 065 R068 073 I085 083 ; #503 RADIUS
N6G65 H93 P504 Q083 046 R032 065 I078 071 J076 032 ; #504 S.ANGL
N7G65 H93 P505 Q072 079 R076 069 I083 032 J078 079 K046 032 ; #505 HOLES NO
N8G65 H94 ; Comment
N9G65 H94 P042 066 Q079 076 R084 032 I072 079 J076 069 ; 'BOLT HOLE
N10G65 H94 R032 067 I073 082 J067 076 K069 042 ; CIRCLE
N11G65 H94 P083 069 Q084 032 080 065 I084 084 J069 082 K078 032 ; SET PATTERN
N12G65 H94 P068 065 Q084 065 R032 084 I079 032 J086 065 K082046 ; DATA NO VAR.
N13G65 H94 P078 079 Q046 053 R048 048 I045 053 J048 053 K046 032 ; No. 500–505
N14M99 ;
20.3 CHARACTERS AND CODES TO BE USED FOR THE PATTERN DATA INPUT FUNCTION

<table>
<thead>
<tr>
<th>Character</th>
<th>Code</th>
<th>Comment</th>
<th>Character</th>
<th>Code</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>065</td>
<td></td>
<td>B</td>
<td>066</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td>067</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>068</td>
<td></td>
<td>E</td>
<td>069</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>F</td>
<td>070</td>
<td>!</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td>071</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td>072</td>
<td>#</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td>073</td>
<td>$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>J</td>
<td>074</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>075</td>
<td>&</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>076</td>
<td>'</td>
</tr>
<tr>
<td>M</td>
<td>077</td>
<td>(</td>
<td>N</td>
<td>078</td>
<td>)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>O</td>
<td>079</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P</td>
<td>080</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Q</td>
<td>081</td>
<td>,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>082</td>
<td>–</td>
</tr>
<tr>
<td>S</td>
<td>083</td>
<td>.</td>
<td>T</td>
<td>084</td>
<td>/</td>
</tr>
<tr>
<td>U</td>
<td>085</td>
<td>:</td>
<td>V</td>
<td>086</td>
<td>;</td>
</tr>
<tr>
<td>W</td>
<td>087</td>
<td><</td>
<td>X</td>
<td>088</td>
<td>=</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td>089</td>
<td>></td>
</tr>
<tr>
<td>Z</td>
<td>090</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>048</td>
<td>@</td>
<td>1</td>
<td>049</td>
<td>[</td>
</tr>
<tr>
<td>2</td>
<td>050</td>
<td>^</td>
<td>3</td>
<td>051</td>
<td>¥</td>
</tr>
<tr>
<td>4</td>
<td>052</td>
<td>]</td>
<td>5</td>
<td>053</td>
<td>_</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE
Right and left parentheses cannot be used.
Table 20.3 (b) Numbers of subprograms employed in the pattern data input function

<table>
<thead>
<tr>
<th>Subprogram No.</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>O9500</td>
<td>Specifies character strings displayed on the pattern data menu.</td>
</tr>
<tr>
<td>O9501</td>
<td>Specifies a character string of the pattern data corresponding to pattern No.1</td>
</tr>
<tr>
<td>O9502</td>
<td>Specifies a character string of the pattern data corresponding to pattern No.2</td>
</tr>
<tr>
<td>O9503</td>
<td>Specifies a character string of the pattern data corresponding to pattern No.3</td>
</tr>
<tr>
<td>O9504</td>
<td>Specifies a character string of the pattern data corresponding to pattern No.4</td>
</tr>
<tr>
<td>O9505</td>
<td>Specifies a character string of the pattern data corresponding to pattern No.5</td>
</tr>
<tr>
<td>O9506</td>
<td>Specifies a character string of the pattern data corresponding to pattern No.6</td>
</tr>
<tr>
<td>O9507</td>
<td>Specifies a character string of the pattern data corresponding to pattern No.7</td>
</tr>
<tr>
<td>O9508</td>
<td>Specifies a character string of the pattern data corresponding to pattern No.8</td>
</tr>
<tr>
<td>O9509</td>
<td>Specifies a character string of the pattern data corresponding to pattern No.9</td>
</tr>
<tr>
<td>O9510</td>
<td>Specifies a character string of the pattern data corresponding to pattern No.10</td>
</tr>
</tbody>
</table>

Table 20.3 (c) Macro instructions used in the pattern data input function

<table>
<thead>
<tr>
<th>G code</th>
<th>H code</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>G65</td>
<td>H90</td>
<td>Specifies the menu title.</td>
</tr>
<tr>
<td>G65</td>
<td>H91</td>
<td>Specifies the pattern name.</td>
</tr>
<tr>
<td>G65</td>
<td>H92</td>
<td>Specifies the pattern data title.</td>
</tr>
<tr>
<td>G65</td>
<td>G93</td>
<td>Specifies the variable name.</td>
</tr>
<tr>
<td>G65</td>
<td>H94</td>
<td>Specifies the comment.</td>
</tr>
</tbody>
</table>

Table 20.3 (d) System variables employed in the pattern data input function

<table>
<thead>
<tr>
<th>System variable</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>#5900</td>
<td>Pattern No. selected by user.</td>
</tr>
</tbody>
</table>
III. OPERATION
1 GENERAL
1.1 MANUAL OPERATION

Explanations

- Manual reference position return

The CNC machine tool has a position used to determine the machine position. This position is called the reference position, where the tool is replaced or the coordinate are set. Ordinarily, after the power is turned on, the tool is moved to the reference position. Manual reference position return is to move the tool to the reference position using switches and pushbuttons located on the operator’s panel.

The tool can be moved to the reference position also with program commands. This operation is called automatic reference position return (See Section II–6).
The tool movement by manual operation

Using machine operator’s panel switches, push buttons, or the manual handle, the tool can be moved along each axis.

The tool can be moved in the following ways:

(i) Jog feed (See Section III–3.2)
 The tool moves continuously while a push button remains pressed.

(ii) Incremental feed (See Section III–3.3)
 The tool moves by the predetermined distance each time a button is pressed.

(iii) Manual handle feed (See Section III–3.4)
 By rotating the manual handle, the tool moves by the distance corresponding to the degree of handle rotation.
1.2 TOOL MOVEMENT BY PROGRAMMING – AUTOMATIC OPERATION

Automatic operation is to operate the machine according to the created program. It includes memory, MDI, and DNC operations. (See Section III–4).

Fig.1.2 (a) Tool movement by programming

Explanations

• Memory operation

After the program is once registered in memory of CNC, the machine can be run according to the program instructions. This operation is called memory operation.

Fig.1.2 (b) Memory operation

• MDI operation

After the program is entered, as an command group, from the MDI keyboard, the machine can be run according to the program. This operation is called MDI operation.

Fig.1.2 (c) MDI operation

• DNC operation

The machine can be operated by reading a program directly from an external input/output device, without having to register the program in CNC memory. This is called DNC operation.
1.3 AUTOMATIC OPERATION

Explanations

- **Program selection**

 Select the program used for the workpiece. Ordinarily, one program is prepared for one workpiece. If two or more programs are in memory, select the program to be used, by searching the program number (Section III–9.3).

 ![Fig.1.3 (a) Program Selection for Automatic Operation](image)

- **Start and stop**

 (See Section III–4)

 Pressing the cycle start push button causes automatic operation to start. By pressing the feed hold or reset push button, automatic operation pauses or stops. By specifying the program stop or program termination command in the program, the running will stop during automatic operation. When one process machining is completed, automatic operation stops.

 ![Fig.1.3 (b) Start and stop for automatic operation](image)
• Handle interruption (See Section III–4.6)

While automatic operation is being executed, tool movement can overlap automatic operation by rotating the manual handle.

Fig.1.3 (c) Handle interruption for automatic operation
1.4 TESTING A PROGRAM

Before machining is started, the automatic running check can be executed. It checks whether the created program can operate the machine as desired. This check can be accomplished by running the machine actually or viewing the position display change (without running the machine) (See Section III–5).

1.4.1 Check by Running the Machine

Explanations

- **Dry run**

 Remove the workpiece, check only movement of the tool. Select the tool movement rate using the dial on the operator’s panel.

- **Feedrate override**

 Check the program by changing the rate specified in the program.
• **Single block**

When the cycle start push button is pressed, the tool executes one operation then stops. By pressing the cycle start again, the tool executes the next operation then stops. The program is checked in this manner.

1.4.2

How to View the Position Display Change without Running the Machine

Explanations

• **Machine lock**

When automatic running is placed into the auxiliary function lock mode during the machine lock mode, all auxiliary functions (spindle rotation, tool replacement, coolant on/off, etc.) are disabled.
1.5 EDITING A PART PROGRAM

After a created program is once registered in memory, it can be corrected or modified from the MDI panel (See Section III–9). This operation can be executed using the part program storage/edit function.
1.6 DISPLAYING AND SETTING DATA

The operator can display or change a value stored in CNC internal memory by key operation on the MDI screen (See III–11).

![Fig.1.6 (a) Displaying and setting data](image)

Explanations

- **Offset value**

![Fig.1.6 (b) Displaying and setting offset values](image)

The tool has the tool dimension (length, diameter). When a workpiece is machined, the tool movement value depends on the tool dimensions. By setting tool dimension data in CNC memory beforehand, automatically generates tool routes that permit any tool to cut the workpiece specified by the program. Tool dimension data is called the offset value (See Section III–11.4.1).
Apart from parameters, there is data that is set by the operator in operation. This data causes machine characteristics to change. For example, the following data can be set:
- Inch/Metric switching
- I/O devices selection
- Mirror image cutting on/off
The above data is called setting data (See Section III–11.4.3).
The CNC functions have versatility in order to take action in characteristics of various machines.
For example, CNC can specify the following:
- Rapid traverse rate of each axis
- Whether increment system is based on metric system or inch system.
- How to set command multiply/detect multiply (CMR/DMR)
Data to make the above specification is called parameters (See Section III–11.5.1).
Parameters differ depending on machine tool.

- Displaying and setting parameters

A key called the data protection key can be defined. It is used to prevent part programs, offset values, parameters, and setting data from being registered, modified, or deleted erroneously (See Section III–11).

- Data protection key
1.7
DISPLAY

1.7.1
Program Display

The contents of the currently active program are displayed. In addition, the programs scheduled next and the program list are displayed. (See Section III–11.2.1)

The cursor indicates the currently executed location

Currently executed program

Active program number
Active sequence number

Program content

Currently executed program

The cursor indicates the currently executed location
1.7.2 Current Position Display

The current position of the tool is displayed with the coordinate values. The distance from the current position to the target position can also be displayed. (See Section III–11.1 to 11.1.3)

![Workpiece coordinate system with coordinates X, Y, Z, and distances indicated]

1.7.3 Alarm Display

When a trouble occurs during operation, alarm numbers and alarm message are displayed on CRT screen. See APPENDIX G for the list of alarms and their meanings. (See Section III–7.1)

![Alarm message example]

ACTUAL POSITION (ABSOLUTE)

<table>
<thead>
<tr>
<th>X</th>
<th>150.000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>100.000</td>
</tr>
<tr>
<td>C</td>
<td>90.000</td>
</tr>
</tbody>
</table>

PART COUNT 30

RUN TIME 0H41M **CYCLE TIME** 0H 0M22S

MEM STOP 19:55:22

O0003 N00003

ALARM MESSAGE

010 IMPROPER G–CODE

MEM STOP 19:55:22

ALARM HISTRY

O1000 N00003
1.7.4 Parts Count Display, Run Time Display

When this option is selected, two types of run time and number of parts are displayed on the screen. (See Section III–11.4.9)

<table>
<thead>
<tr>
<th>ACTUAL POSITION (ABSOLUTE)</th>
<th>O0003 N00003</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>150.000</td>
</tr>
<tr>
<td>Z</td>
<td>100.000</td>
</tr>
<tr>
<td>C</td>
<td>90.000</td>
</tr>
</tbody>
</table>

PART COUNT: 18
RUN TIME: 0H16M
CYCLE TIME: 0H 1M 0S

MEM STRT *** FIN 20:22:23
[ABS][REL][ALL][OPRT]
1.7.5
Graphic Display (See Section III–12)

The graphic can be used to draw a tool path for automatic operation and manual operation, thereby indicating the progress of cutting and the position of the tool. (See Section III–12)
1.8 DATA OUTPUT

Programs, offset values, parameters, etc. input in CNC memory can be output to paper tape, cassette, or a floppy disk for saving. After once output to a medium, the data can be input into CNC memory.

Fig. 1.8 Data Output
The available operational devices include the setting and display unit attached to the CNC, the machine operator’s panel, and external input/output devices such as a Handy File.
2.1 SETTING AND DISPLAY UNITS

The setting and display units are shown in Subsections 2.1.1 to 2.1.5 of Part III.

7.2”/8.4” LCD-Mounted Type CNC control unit : III–2.1.1
9.5”/10.4” LCD-Mounted Type CNC control unit : III–2.1.2
Stand–Alone Type small MDI unit : III–2.1.3
Stand–Alone Type standard MDI unit : III–2.1.4
Stand–Alone Type 61 full–key MDI unit : III–2.1.5
2.1.1
7.2”/8.4” LCD–Mounted
Type CNC Control Unit

2.1.2
9.5”/10.4”
LCD–Mounted Type
CNC Control Unit
2.1.3
Stand–Alone Type
Small MDI Unit

[Diagram of MDI Unit keys]

- Address/numeric keys
- Function keys
- Cursor keys
- Page change keys
- Shift key
- Cancel (CAN) key
- Input key
- Edit keys
- Help key
- Reset key
2.1.4
Stand–Alone Type
Standard MDI Unit

[Diagram showing various keys and their functions]
2.1.5
Stand–Alone Type 61
Full–Key MDI Unit
2.2 EXPLANATION OF THE KEYBOARD

Table 2.2 Explanation of the MDI keyboard

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RESET key</td>
<td>Press this key to reset the CNC, to cancel an alarm, etc.</td>
</tr>
<tr>
<td>2</td>
<td>HELP key</td>
<td>Press this key to display how to operate the machine tool, such as MDI key operation, or the details of an alarm which occurred in the CNC (Help function). In case of 210i/210is, this key is assigned to “ESC” key of the personal computer.</td>
</tr>
<tr>
<td>3</td>
<td>Soft keys</td>
<td>The soft keys have various functions, according to the Applications. The soft key functions are displayed at the bottom of the screen.</td>
</tr>
<tr>
<td>4</td>
<td>Address and numeric keys</td>
<td>Press these keys to input alphabetic, numeric, and other characters.</td>
</tr>
<tr>
<td>5</td>
<td>SHIFT key</td>
<td>Some keys have two characters on their keytop. Pressing the <SHIFT> key switches the characters. Special character ^ is displayed on the screen when a character indicated at the bottom right corner on the keytop can be entered.</td>
</tr>
<tr>
<td>6</td>
<td>INPUT key</td>
<td>When an address or a numerical key is pressed, the data is input to the buffer, and it is displayed on the screen. To copy the data in the key input buffer to the offset register, etc., press the <INPUT> key. This key is equivalent to the [INPUT] key of the soft keys, and either can be pressed to produce the same result.</td>
</tr>
<tr>
<td>7</td>
<td>Cancel key</td>
<td>Press this key to delete the last character or symbol input to the key input buffer. When the key input buffer displays >N001X100Z and the cancel key is pressed, Z is canceled and >N001X100 is displayed.</td>
</tr>
<tr>
<td>8</td>
<td>Program edit keys</td>
<td>Press these keys when editing the program.</td>
</tr>
<tr>
<td></td>
<td>ALTER</td>
<td>Alteration (In case of 210i/210is, this key is assigned to “Tab” key of the personal computer.)</td>
</tr>
<tr>
<td></td>
<td>INSERT</td>
<td>Insertion</td>
</tr>
<tr>
<td></td>
<td>DELETE</td>
<td>Deletion</td>
</tr>
<tr>
<td>9</td>
<td>Function keys</td>
<td>Press theses keys to switch display screens for each function. See sec. III–2.3 for details of the function keys.</td>
</tr>
<tr>
<td>Number</td>
<td>Name</td>
<td>Explanation</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>10</td>
<td>Cursor move keys</td>
<td>There are four different cursor move keys.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- This key is used to move the cursor to the right or in the forward direction. The cursor is moved in short units in the forward direction.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- This key is used to move the cursor to the left or in the reverse direction. The cursor is moved in short units in the reverse direction.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- This key is used to move the cursor in a downward or forward direction. The cursor is moved in large units in the forward direction.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- This key is used to move the cursor in an upward or reverse direction. The cursor is moved in large units in the reverse direction.</td>
</tr>
<tr>
<td>11</td>
<td>Page change keys</td>
<td>Two kinds of page change keys are described below.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- This key is used to changeover the page on the screen in the forward direction.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- This key is used to changeover the page on the screen in the reverse direction.</td>
</tr>
</tbody>
</table>
2.3 FUNCTION KEYS AND SOFT KEYS

The function keys are used to select the type of screen (function) to be displayed. When a soft key (section select soft key) is pressed immediately after a function key, the screen (section) corresponding to the selected function can be selected.

1. Press a function key on the MDI panel. The chapter selection soft keys that belong to the selected function appear.

2. Press one of the chapter selection soft keys. The screen for the selected chapter appears. If the soft key for a target chapter is not displayed, press the continuous menu key (next–menu key). In some cases, additional chapters can be selected within a chapter.

3. When the target chapter screen is displayed, press the operation selection key to display data to be manipulated.

4. To redisplay the chapter selection soft keys, press the return menu key.

The general screen display procedure is explained above. However, the actual display procedure varies from one screen to another. For details, see the description of individual operations.
2.3.2 Function Keys

Function keys are provided to select the type of screen to be displayed. The following function keys are provided on the MDI panel:

- **POS**
 - Press this key to display the *position screen*.

- **PROG**
 - Press this key to display the *program screen*.

- **OFFSET SETTING**
 - Press this key to display the *offset/setting screen*.

- **SYSTEM**
 - Press this key to display the *system screen*.

- **MESSAGE**
 - Press this key to display the *message screen*.

- **GRAPH**
 - Press this key to display the *graphics screen*.

- **CUSTOM**
 - Press this key to display the *custom screen (conversational macro screen)*.
 - In case of 210i, this key is assigned to “Ctrl” key of the personal computer.
 - In case of 210i, this key is assigned to “Alt” key of the personal computer.
2.3.3 Soft Keys

To display a more detailed screen, press a function key followed by a soft key. Soft keys are also used for actual operations. The following illustrates how soft key displays are changed by pressing each function key.

The symbols in the following figures mean as shown below:

- Indicates screens
- Indicates a screen that can be displayed by pressing a function key (*1)
[] Indicates a soft key (*2)
() Indicates input from the MDI panel.
[] Indicates a soft key displayed in green (or highlighted).
[] Indicates the continuous menu key (rightmost soft key) (*3).

*1 Press function keys to switch between screens that are used frequently.

*2 Some soft keys are not displayed depending on the option configuration.

*3 In some cases, the continuous menu key will not appear when a 12 soft key display unit is used.
Position Screen

Soft key transition triggered by the function key POS

Absolute coordinate display

ABS [OPRT] PTSPRE [EXEC]
[WORK] RUNPRE [EXEC] ALLEXE (Axis name) [EXEC]

Relative coordinate display

REL [OPRT] (Axis or numeral) [PRESET]
[ORIGIN] [ALLEXE]
[PTSPRE] [EXEC]
[WORK] RUNPRE [EXEC]

Current position display

ALL [OPRT] (Axis or numeral) [PRESET]
[ORIGIN] [ALLEXE]
[PTSPRE] [EXEC]
[WORK] RUNPRE [EXEC]

Manual handle interruption

HNDL [OPRT] PTSPRE [EXEC]
[WORK] RUNPRE [EXEC]

Monitor screen

MONI [OPRT] PTSPRE [EXEC]
[WORK] RUNPRE [EXEC]
PROGRAM SCREEN

Soft key transition triggered by the function key in the MEM mode

Program display screen

Program check display screen

Current block display screen

Next block display screen

Program restart display screen

(2)(Continued on the next page)
(2) [FL.SDL] [PRGRM] \(\rightarrow\) Return to (1) (Program display)

File directory display screen

- [DIR] (OPRT) SELECT \(\rightarrow\) [EXEC]
 (File No.) [F SET] \(\rightarrow\)

Schedule operation display screen

- [SCHDUL] (OPRT) CLEAR \(\rightarrow\) [CAN]
 \(\rightarrow\) [EXEC]
 (Schedule data) \(\rightarrow\) [INPUT]
2. OPERATIONAL DEVICES OPERATION B-63604EN/01

PROGRAM SCREEN

Soft key transition triggered by the function key PROG in the EDIT mode

(Continued on the next page)
2. OPERATIONAL DEVICES

(1) Program directory display

- [LIB] (O number) [OPRT] [O SRH] ↔ Return to the program
- [READ] [CHAIN] [STOP] [CAN] [EXEC]
- [PUNCH] [STOP] [CAN] [EXEC]

(2) Floppy directory display

- [FLOPPY] [PRGRM] [DIR] [OPRT] [FsRH] ↔ Return to the program
- [READ] (Numeral) [F SET] [CAN] [EXEC]
- [PUNCH] (Numeral) [F SET] [CAN] [EXEC]
- [DELETE] (Numeral) [F SET] [CAN] [EXEC]
PROGRAM SCREEN

Soft key transition triggered by the function key PROG in the MDI mode

Program display

Program input screen

Current block display screen

Next block display screen

Program restart display screen

2. OPERATIONAL DEVICES

PROGRAM SCREEN

Soft key transition triggered by the function key in the HNDL, JOG, or REF mode

PROG

Program display

[PRGRM] [OPRT] [BG–EDT] ⇒ See “When the soft key [BG–EDT] is pressed”

Current block display screen

[CURRENT] [OPRT] [BG–EDT] ⇒ See “When the soft key [BG–EDT] is pressed”

Next block display screen

[NEXT] [OPRT] [BG–EDT] ⇒ See “When the soft key [BG–EDT] is pressed”

Program restart display screen

[RSTR] [OPRT] [BG–EDT] ⇒ See “When the soft key [BG–EDT] is pressed”

PROGRAM SCREEN

Soft key transition triggered by the function key in the TJOG or THDL mode

PROG

Program display

[PRGRM] [OPRT] [BG–EDT] ⇒ See “When the soft key [BG–EDT] is pressed”

Program directory display

[LIB] [OPRT] [BG–EDT] ⇒ See “When the soft key [BG–EDT] is pressed”

(O number) [O SRH] ⇒ Return to the program

(Address) [SRH↓]

(Address) [SRH↑]

REWIND

(O number) [O SRH] ⇒ Return to the program

--- 391 ---
Soft key transition triggered by the function key **PROG**
(When the soft key [BG–EDT] is pressed in all modes)

Program display

- **[PRGRM]** — **[OPRT]**
 - **[BG–END]**
 - (O number)
 - (Address)
 - [O SRH]
 - [SRU]
 - [SRHT]
 - [REWIND]

- **[F SRH]**
 - (N number)
 - [EXEC]

- **[READ]**
 - [CHAIN]
 - (The cursor moves to the end of a program.)
 - [STOP]
 - [CAN]
 - (O number)
 - [EXEC]

- **[PUNCH]**
 - [STOP]
 - [CAN]
 - (O number)
 - [EXEC]

- **[DELETE]**
 - [CAN]
 - (N number)
 - [EXEC]

- **[EX–EDT]**
 - [COPY]
 - [CRSR–]
 - [CRSR]
 - [-BTTM]
 - [ALL]
 - (O number)
 - [EXEC]

- **[MOVE]**
 - [CRSR–]
 - [-CRSR]
 - [-BTTM]
 - [ALL]
 - (O number)
 - [EXEC]

- **[MERGE]**
 - [-CRSR]
 - [-BTTM]
 - (O number)
 - [EXEC]

- **[CHANGE]**
 - (Address)
 - [BEFORE]
 - (Address)
 - [AFTER]
 - [SKIP]
 - [1–EXEC]
 - [EXEC]
2. OPERATIONAL DEVICES

(1) Program directory display

[LIB] [OPRT] [BG–EDT] (O number) [O SRH] ➔ Return to the program

[CHAIN] [STOP] [CAN] (O number) [EXEC]

[READ] [CHAIN] [STOP] [CAN] (O number) [EXEC]

[PUNCH] [CHAIN] [STOP] [CAN] (O number) [EXEC]

[EXEC] [F SRH] (Numeral) [F SET]

[FLOPPY] [OPRT] [PRGRM] [DIR] ➔ Return to the program

[F SRH] (Numeral) [F SET]

[F SET] [CAN] [EXEC]

[READ] (Numeral) [F SET]

[STOP] [CAN] [EXEC]

[PUNCH] (Numeral) [F SET]

[STOP] [CAN] [EXEC]

[DELETE] (Numeral) [F SET]

[CAN] [EXEC]
OFFSET/SETTING SCREEN

Soft key transition triggered by the function key

Tool offset screen

- [OFFSET]
- [WEAR]
- [GEOM]
- [OPRT]
- (Number) [NO SRH]
- (Axis name and numeral) [MEASUR]
- (Axis name) [INPC]
- (Numeral) [INPUT]
- (Numeral) [INPUT]

- [CLEAR]
- [ALL]
- [WEAR]
- [GEOM]
- [READ]
- [CAN]
- [EXEC]
- [PUNCH]

Setting screen

- [SETTING]
- [OPRT]
- (Number) [NO SRH]
- [ON: 1]
- [OFF: 0]
- (Numeral) [INPUT]
- (Numeral) [INPUT]

Workpiece coordinate system setting screen

- [WORK]
- [OPRT]
- (Number) [NO SRH]
- (Axis name and numeral) [MEASUR]
- (Numeral) [INPUT]
- (Numeral) [INPUT]

Macro variables display screen

- [MACRO]
- [OPRT]
- (Number) [NO SRH]
- (Axis name) [INPC]
- (Numeral) [INPUT]

- [PUNCH]
- [CAN]
- [EXEC]

(1)(Continued on the next page)
1. Software operator's panel screen

2. Tool life management setting screen

3. Y axis tool offset screen

4. Workpiece shift screen

5. Chuck and tailstock barriers setting screen

6. B axis tool compensation screen
SYSTEM SCREEN

Soft key transition triggered by the function key SYSTEM

Parameter screen

[PARAM] (OPRT) (Numeral) (Number) [NO SRH]
[ON:1] [OFF:0]
(Numeral) [INPUT]
(Numeral) [INPUT]

[READ] [CAN] [EXEC]
[PUNCH] [ALL] [CAN] [EXEC]

Diagnosis screen

[DGNOS] (OPRT) (Number) [NO SRH]

System configuration screen

[System]
MESSAGE SCREEN
Soft key transition triggered by the function key

HELP SCREEN
Soft key transition triggered by the function key

MESSAGE

Alarm display screen

Message display screen

Alarm history screen

HELP

Alarm detail screen

Operation method screen

Parameter table screen
GRAPHIC SCREEN
Soft key transition triggered by the function key [GRAPH]

Tool path graphics
Mode 0

GRAPH

Tool path graphics

- [G.PRM] [OPRT] [NORMAL]
- [GRAPH] [OPRT] [ERASE]
- [ZOOM] [OPRT] [ACT]

HI/LO
2.3.4 Key Input and Input Buffer

When an address and a numerical key are pressed, the character corresponding to that key is input once into the key input buffer. The contents of the key input buffer is displayed at the bottom of the screen. In order to indicate that it is key input data, a “>” symbol is displayed immediately in front of it. A “_” is displayed at the end of the key input data indicating the input position of the next character.

![Key input buffer display](image)

Fig. 2.3.4 Key input buffer display

To input the lower character of the keys that have two characters inscribed on them, first press the **SHIFT** key and then the key in question.

When the **SHIFT** key is pressed, “_” indicating the next character input position changes to “^”. Now lowercase characters can be entered (shift state).

When a character is input in shift status the shift status is canceled.

Furthermore, if the **SHIFT** key is pressed in shift status, the shift status is canceled.

It is possible to input up to 32 characters at a time in the key input buffer.

Press the **CAN** key to cancel a character or symbol input in the key input buffer.

(Example)

When the key input buffer displays

> N001X100Z_

and the cancel **CAN** key is pressed, Z is canceled and

> N001X100_

is displayed.
After a character or number has been input from the MDI panel, a data check is executed when the \textit{INPUT} key or a soft key is pressed. In the case of incorrect input data or the wrong operation, a flashing warning message will be displayed on the status display line.

\begin{table}[h]
\centering
\begin{tabular}{|l|l|}
\hline
Warning message & Content \\
\hline
\textbf{FORMAT ERROR} & The format is incorrect. \\
\textbf{WRITE PROTECT} & Key input is invalid because of data protection key or the parameter is not write enabled. \\
\textbf{DATA IS OUT OF RANGE} & The input value exceeds the permitted range. \\
\textbf{TOO MANY DIGITS} & The input value exceeds the permitted number of digits. \\
\textbf{WRONG MODE} & Parameter input is not possible in any mode other than MDI mode. \\
\textbf{EDIT REJECTED} & It is not possible to edit in the current CNC status. \\
\hline
\end{tabular}
\end{table}
2.3.6 Soft Key Configuration

There are 12 soft keys in the 10.4” LCD/MDI or 9.5” LCD/MDI panel. As illustrated below, the 5 soft keys on the right and those on the right and left edges operate in the same way as the 7.2” LCD/8.4” LCD, whereas the 5 keys on the left hand side are expansion keys dedicated to the 10.4” LCD, 9.5” LCD.

Whenever a position display appears in the left half of the screen after a function key other than POS is pressed, the soft keys on the left half of the soft key display area are displayed as follows:

The soft key corresponding to the position display is indicated in reverse video.
2.4 EXTERNAL I/O DEVICES

Handy File of external input/output device is available. For detail on Handy File, refer to the corresponding manual listed below.

Table 2.4 External I/O device

<table>
<thead>
<tr>
<th>Device name</th>
<th>Usage</th>
<th>Max. storage capacity</th>
<th>Reference manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>FANUC Handy File</td>
<td>Easy-to-use, multi function input/output device. It is designed for FA equipment and uses floppy disks.</td>
<td>3600m</td>
<td>B–61834E</td>
</tr>
</tbody>
</table>

The following data can be input/output to or from external input/output devices:
1. Programs
2. Offset data
3. Parameters
4. Custom macro common variables
5. Pitch error compensation data

For how data is input and output, see Chapter III–8.
Before an external input/output device can be used, parameters must be set as follows.

CNC

MAIN CPU BOARD

- **Channel 1**
 - JD5A
 - RS–232–C
- **Channel 2**
 - JD5B
 - RS–232–C

OPTION–1 BOARD

- **Channel 3**
 - JD5C
 - RS–232–C
 - JD6A
 - RS–422

CNC has three channels of reader/punch interfaces. This CNC has three channels of interfaces (reader/punch and remote buffer interfaces). It also has a memory card interface. The input/output device to be used is specified by setting the channel (interface) connected to that device in setting parameter I/O CHANNEL.

The specified data, such as a baud rate and the number of stop bits, of an input/output device connected to a specific channel must be set in parameters for that channel in advance. (This is not necessary for the memory card interface.)

For channel 1, two combinations of parameters to specify the input/output device data are provided.

The following shows the interrelation between the reader/punch interface parameters for the channels.

<table>
<thead>
<tr>
<th>Parameter Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0020</td>
<td>I/O CHANNEL</td>
</tr>
<tr>
<td>0101</td>
<td>Stop bit and other data</td>
</tr>
<tr>
<td>0102</td>
<td>Number specified for the input/output device</td>
</tr>
<tr>
<td>0103</td>
<td>Baud rate</td>
</tr>
<tr>
<td>0111</td>
<td>Stop bit and other data</td>
</tr>
<tr>
<td>0112</td>
<td>Number specified for the input/output device</td>
</tr>
<tr>
<td>0113</td>
<td>Baud rate</td>
</tr>
<tr>
<td>0121</td>
<td>Stop bit and other data</td>
</tr>
<tr>
<td>0122</td>
<td>Number specified for the input/output device</td>
</tr>
<tr>
<td>0123</td>
<td>Baud rate</td>
</tr>
<tr>
<td>0131</td>
<td>Stop bit and other data</td>
</tr>
<tr>
<td>0132</td>
<td>Number specified for the input/output device</td>
</tr>
<tr>
<td>0133</td>
<td>Baud rate</td>
</tr>
<tr>
<td>0134</td>
<td>Selection of protocol Selection of RS–422 or RS–232C, and other data</td>
</tr>
<tr>
<td>0135</td>
<td></td>
</tr>
</tbody>
</table>
2.4.1 FANUC Handy File

The Handy File is an easy-to-use, multi function floppy disk input/output device designed for FA equipment. By operating the Handy File directly or remotely from a unit connected to the Handy File, programs can be transferred and edited.

The Handy File uses 3.5-inch floppy disks, which do not have the problems of paper tape (i.e., noisy during input/output, easily broken, and bulky).

One or more programs (up to 1.44M bytes, which is equivalent to the memory capacity of 3600–m paper tape) can be stored on one floppy disk.
2.5 POWER ON/OFF

2.5.1 Turning on the Power

Procedure of turning on the power

1. Check that the appearance of the CNC machine tool is normal. (For example, check that front door and rear door are closed.)

2. Turn on the power according to the manual issued by the machine tool builder.

3. After the power is turned on, check that the position screen is displayed. An alarm screen is displayed if an alarm occurs upon power-on. If the screen shown in Section III–2.5.2 is displayed, a system failure may have occurred.

4. Check that the fan motor is rotating.

WARNING
Until the positional or alarm screen is displayed at the power on, do not touch them. Some keys are used for the maintenance or special operation purpose. When they are pressed, unexpected operation may be caused.
2.5.2 Screen Displayed at Power–on

If a hardware failure or installation error occurs, the system displays one of the following three types of screens then stops. Information such as the type of printed circuit board installed in each slot is indicated. This information and the LED states are useful for failure recovery.

Slot status display

For more information about the types of printed circuit boards and module functions, refer to the maintenance manual (B–63525EN).
Screen indicating module setting status

DEH1 – 01

SLOT 01 (3046) : END
SLOT 02 (3050) :

END: Setting completed
Blank: Setting not completed
Module ID
Slot number

Display of software configuration

DEH1 – 01

CNC control software
Order–made macro/macro compiler
PMC

The software configuration can be displayed on the system configuration screen also. Refer to the MAINTENANCE MANUAL (B–63525EN) for the system configuration screen.

2.5.3 Power Disconnection

Procedure for Poser Disconnection

1. Check that the LED indicating the cycle start is off on the operator’s panel.
2. Check that all movable parts of the CNC machine tool is stopping.
3. If an external input/output device such as the Handy File is connected to the CNC, turn off the external input/output device.
4. Continue to press the POWER OFF pushbutton for about 5 seconds.
5. Refer to the machine tool builder’s manual for turning off the power to the machine.
MANUAL OPERATION are six kinds as follows:

3.1 Manual reference position return
3.2 Jog feed
3.3 Incremental feed
3.4 Manual handle feed
3.5 Manual absolute on and off
3.1 MANUAL REFERENCE POSITION RETURN

The tool is returned to the reference position as follows:
The tool is moved in the direction specified in parameter ZMI (bit 5 of No. 1006) for each axis with the reference position return switch on the machine operator’s panel. The tool moves to the deceleration point at the rapid traverse rate, then moves to the reference position at the FL speed. The rapid traverse rate and FL speed are specified in parameters (No. 1420, 1421, and 1425).

Four step rapid traverse override is effective during rapid traverse.

When the tool has returned to the reference position, the reference position return completion LED goes on. The tool generally moves along only a single axis, but can move along three axes simultaneously when specified so in parameter JAX(bit 0 of No.1002).

![Diagram of Reference Position Return]

Procedure for Manual Reference Position Return

1. Press the reference position return switch, one of the mode selection switches.
2. To decrease the feedrate, press a rapid traverse override switch.
3. Press the feed axis and direction selection switch corresponding to the axis and direction for reference position return. Continue pressing the switch until the tool returns to the reference position. The tool can be moved along three axes simultaneously when specified so in an appropriate parameter setting. The tool moves to the deceleration point at the rapid traverse rate, then moves to the reference position at the FL speed set in a parameter.
 When the tool has returned to the reference position, the reference position return completion LED goes on.
4. Perform the same operations for other axes, if necessary.

The above is an example. Refer to the appropriate manual provided by the machine tool builder for the actual operations.
Explaination

- **Automatically setting the coordinate system**
 Bit 0 (ZPR) of parameter No. 1201 is used for automatically setting the coordinate system. When ZPR is set, the coordinate system is automatically determined when manual reference position return is performed.
 When α and γ are set in parameter 1250, the workpiece coordinate system is determined so that the reference point on the tool holder or the position of the tip of the reference tool is $X=\alpha, Z=\gamma$ when reference position return is performed. This has the same effect as specifying the following command for reference position return:
 \[
 G50X\alpha Z\gamma ;
 \]

CAUTION
When options of the workpiece coordinate system is selected, it is not able to use. Once manual reference position return has been performed, workpiece coordinate systems are established based on the workpiece origin offsets corresponding to G54 to G59 (see Sections II–7.2 and III–11.4.10.)

Restrictions

- **Moving the tool again**
 Once the REFERENCE POSITION RETURN COMPLETION LED lights at the completion of reference position return, the tool does not move unless the REFERENCE POSITION RETURN switch is turned off.

- **Reference position return completion LED**
 The REFERENCE POSITION RETURN COMPLETION LED is extinguished by either of the following operations:
 – Moving from the reference position.
 – Entering an emergency stop state.

- **The distance to return to reference position**
 For the distance (Not in the deceleration condition) to return the tool to the reference position, refer to the manual issued by the machine tool builder.
In the JOG mode, pressing a feed axis and direction selection switch on the machine operator’s panel continuously moves the tool along the selected axis in the selected direction. The manual continuous feedrate is specified in a parameter (No. 1423). The manual continuous feedrate can be adjusted with the manual continuous feedrate override dial. Pressing the rapid traverse switch moves the tool at the rapid traverse feedrate (No. 1424) regardless of the position of the JOG feedrate override dial. This function is called the manual rapid traverse. Manual operation is allowed for one axis at a time. 3 axes can be selected at a time by parameter JAX (No. 1002#0).

3.2 JOG FEED

1. Press the manual continuous switch, one of the mode selection switches.
2. Press the feed axis and direction selection switch corresponding to the axis and direction the tool is to be moved. While the switch is pressed, the tool moves at the feedrate specified in a parameter (No. 1423). The tool stops when the switch is released.
3. The manual continuous feedrate can be adjusted with the manual continuous feedrate override dial.
4. Pressing the rapid traverse switch while pressing a feed axis and direction selection switch moves the tool at the rapid traverse rate while the rapid traverse switch is pressed. Rapid traverse override by the rapid traverse override switches is effective during rapid traverse.

The above is an example. Refer to the appropriate manual provided by the machine tool builder for the actual operations.
To enable manual per revolution feed, set bit 4 (JRV) of parameter No. 1402 to 1.
During manual per revolution feed, the tool is jogged at the following feedrate:
Feed distance per rotation of the spindle (mm/rev) (specified with parameter No. 1423) x JOG feedrate override x actual spindle speed (rev/min).

Feedrate, time constant and method of automatic acceleration/deceleration for manual rapid traverse are the same as G00 in programmed command.

Changing the mode to the JOG feed mode while pressing a feed axis and direction selection switch does not enable JOG feed. To enable JOG feed, enter the JOG feed mode first, then press a feed axis and direction selection switch.

If reference position return is not performed after power–on, pushing RAPID TRAVERSE button does not actuate the rapid traverse but the remains at the manual continuous feedrate. This function can be disabled by setting parameter RPD (No.1401#01).
3.3 INCREMENTAL FEED

In the incremental (INC) mode, pressing a feed axis and direction selection switch on the machine operator’s panel moves the tool one step along the selected axis in the selected direction. The minimum distance the tool is moved is the least input increment. Each step can be 10, 100, or 1000 times the least input increment. This mode is effective when a manual pulse generator is not connected.

Procedure for Incremental Feed

1. Press the INC switch, one of the mode selection switches.
2. Select the distance to be moved for each step with the magnification dial.
3. Press the feed axis and direction selection switch corresponding to the axis and direction the tool is to be moved. Each time a switch is pressed, the tool moves one step. The feedrate is the same as the jog feedrate.
4. Pressing the rapid traverse switch while pressing a feed axis and direction selection switch moves the tool at the rapid traverse rate. Rapid traverse override by the rapid traverse override switch is effective during rapid traverse.

The above is an example. Refer to the appropriate manual provided by the machine tool builder for the actual operations.

Explanation

- Travel distance specified with a diameter

The distance the tool travels along the X-axis can be specified with a diameter.
3.4 MANUAL HANDLE FEED

In the handle mode, the tool can be minutely moved by rotating the manual pulse generator on the machine operator’s panel. Select the axis along which the tool is to be moved with the handle feed axis selection switches.

The minimum distance the tool is moved when the manual pulse generator is rotated by one graduation is equal to the least input increment. Or the distance the tool is moved when the manual pulse generator is rotated by one graduation can be magnified by 1 times, 10 times, or by one of the two magnifications (total four magnifications) specified by parameters (No. 7113 and 7114).

Procedure for Manual Handle Feed

1. Press the HANDLE switch, one of the mode selection switches.
2. Select the axis along which the tool is to be moved by pressing a handle feed axis selection switch.
3. Select the magnification for the distance the tool is to be moved by pressing a handle feed magnification switch. The distance the tool is moved when the manual pulse generator is rotated by one graduation is: Least input increment multiplied by magnification
4. Move the tool along the selected axis by rotating the handle. Rotating the handle 360 degrees moves the tool the distance equivalent to 100 graduations.

The above is an example. Refer to the appropriate manual provided by the machine tool builder for the actual operations.
Parameter JHD (bit 0 of No. 7100) enables or disables the manual pulse generator in the JOG mode. When the parameter JHD (bit 0 of No. 7100) is set 1, both manual handle feed and incremental feed are enabled.

Parameter THD (bit 1 of No. 7100) enables or disables the manual pulse generator in the TEACH IN JOG mode.

Parameter HPF (bit 4 of No. 7100) or (No. 7117) specifies as follows:

- **Parameter HPF (bit 4 of No. 7100)**
 - **Set value 0**: The feedrate is clamped at the rapid traverse rate and generated pulses exceeding the rapid traverse rate are ignored. (The distance the tool is moved may not match the graduations on the manual pulse generator.)
 - **Set value 1**: The feedrate is clamped at the rapid traverse rate and generated pulses exceeding the rapid traverse rate are not ignored but accumulated in the CNC. (No longer rotating the handle does not immediately stop the tool. The tool is moved by the pulses accumulated in the CNC before it stops.)

- **Parameter HPF (No. 7177) (It is available when parameter HPF is 0.)**
 - **Set value 0**: The feedrate is clamped at the rapid traverse rate and generated pulses exceeding the rapid traverse rate are ignored. (The distance the tool is moved may not match the graduations on the manual pulse generator.)
 - **Other than 0**: The feedrate is clamped at the rapid traverse rate and generated pulses exceeding the rapid traverse rate are not ignored but accumulated in the CNC until the limit specified in parameter No. 7117 is reached. (No longer rotating the handle does not immediately stop the tool. The tool is moved by the pulses accumulated in the CNC before it stops.)

Parameter HNGx (bit 0 of No. 7102) switches the direction of MPG in which the tool moves along an axis, corresponding to the direction in which the handle of the manual pulse generator is rotated.
Manual pulse generators for up to two axes can be set. The two axes can be moved simultaneously.

WARNING
Rotating the handle quickly with a large magnification such as x100 moves the tool too fast. The feedrate is clamped at the rapid traverse feedrate.

NOTE
Rotate the manual pulse generator at a rate of five rotations per second or lower. If the manual pulse generator is rotated at a rate higher than five rotations per second, the tool may not stop immediately after the handle is no longer rotated or the distance the tool moves may not match the graduations on the manual pulse generator.
Whether the distance the tool is moved by manual operation is added to the coordinates can be selected by turning the manual absolute switch on or off on the machine operator’s panel. When the switch is turned on, the distance the tool is moved by manual operation is added to the coordinates. When the switch is turned off, the distance the tool is moved by manual operation is not added to the coordinates.

Fig. 3.5(a) Coordinates with the switch ON

The coordinates values change by the amount of manual operation.

Fig. 3.5(b) Coordinates with the switch OFF

The coordinates do not change.
The following describes the relation between manual operation and coordinates when the manual absolute switch is turned on or off, using a program example.

```
G01 G90 X100.0 Z100.0 F010 ; (1)
X200.0 Z150.0 ; (2)
X300.0 Z200.0 ; (3)
```

The subsequent figures use the following notation:

- Movement of the tool when the switch is on
- Movement of the tool when the switch is off

The coordinates after manual operation include the distance the tool is moved by the manual operation. When the switch is off, therefore, subtract the distance the tool is moved by the manual operation.

Manual operation after the end of block

Coordinates when block (2) has been executed after manual operation (X-axis +20.0, Z-axis +100.0) at the end of movement of block (1).

Manual operation after a feed hold

Coordinates when the feed hold button is pressed while block (2) is being executed, manual operation (X-axis + 75.0) is performed, and the cycle start button is pressed and released.
• When reset after a manual operation following a feed hold

Coordinates when the feed hold button is pressed while block (2) is being executed, manual operation (Y-axis +75.0) is performed, the control unit is reset with the RESET button, and block (2) is read again.

• When a movement command in the next block is only one axis

When there is only one axis in the following command, only the commanded axis returns.

• When the next move block is an incremental

• Manual operation during tool nose radius compensation

When the following commands are incremental commands, operation is the same as when the switch is OFF.

When the switch is OFF

After manual operation is performed with the switch OFF during tool nose radius compensation, automatic operation is restarted then the tool moves parallel to the movement that would have been performed if manual movement had not been performed. The amount of separation equals to the amount that was performed manually.
When the switch is ON during tool nose radius compensation
Operation of the machine upon return to automatic operation after manual intervention with the switch is ON during execution with an absolute command program in the tool nose radius compensation mode will be described. The vector created from the remaining part of the current block and the beginning of the next block is shifted in parallel. A new vector is created based on the next block, the block following the next block and the amount of manual movement. This also applies when manual operation is performed during cornering.

Manual operation performed in other than cornering
Assume that the feed hold was applied at point \(P_H \) while moving from \(P_A \) to \(P_B \) of programmed path \(P_A, P_B, \) and \(P_C \) and that the tool was manually moved to \(P_H' \). The block end point \(P_B \) moves to the point \(P_B' \) by the amount of manual movement, and vectors \(VB_1 \) and \(VB_2 \) at \(P_B \) also move to \(VB_1' \) and \(VB_2' \). Vectors \(VC_1 \) and \(VC_2 \) between the next two blocks \(P_B - P_C \) and \(P_C - P_D \) are discarded and new vectors \(VC_1' \) and \(VC_2' \) (\(VC_2' = VC_2 \) in this example) are produced from the relation between \(P_B' - P_C \) and \(P_C - P_D \). However, since \(VB_2' \) is not a newly calculated vector, correct offset is not performed at block \(P_B' - P_C \). Offset is correctly performed after \(P_C \).
Manual operation during cornering
This is an example when manual operation is performed during cornering. $V_{A2}', V_{B1}',$ and V_{B2}' are vectors moved in parallel with V_{A2}, V_{B1} and V_{B2} by the amount of manual movement. The new vectors are calculated from V_{C1} and V_{C2}. Then correct tool nose radius compensation is performed for the blocks following P_c.

Manual operation after single block stop
Manual operation was performed when execution of a block was terminated by single block stop. Vectors V_{B1} and V_{B2} are shifted by the amount of manual operation. Subsequent processing is the same as case a described above. An MDI operation can also be intervened as well as manual operation. The movement is the same as that by manual operation.
Programmed operation of a CNC machine tool is referred to as automatic operation.
This chapter explains the following types of automatic operation:

- **MEMORY OPERATION**
 Operation by executing a program registered in CNC memory

- **MDI OPERATION**
 Operation by executing a program entered from the MDI panel

- **DNC operation**
 Operation while reading a program from external input/output device

- **PROGRAM RESTART**
 Restarting a program for automatic operation from an intermediate point

- **SCHEDULING FUNCTION**
 Scheduled operation by executing programs (files) registered in an external input/output device (Handy File, Floppy Cassette, or FA Card)

- **SUBPROGRAM CALL FUNCTION**
 Function for calling and executing subprograms (files) registered in an external input/output device (Handy File, Floppy Cassette, or FA Card) during memory operation

- **MANUAL HANDLE INTERRUPTION**
 Function for performing manual feed during movement executed by automatic operation

- **MIRROR IMAGE**
 Function for enabling mirror–image movement along an axis during automatic operation

- **MANUAL INTERVENTION AND RETURN**
 Function restarting automatic operation by returning the tool to the position where manual intervention was started during automatic operation.

- **MEMORY CARD–BASED DNC OPERATION**
 Automatic operation by a program written to a memory card
4. AUTOMATIC OPERATION

4.1 MEMORY OPERATION

Programs are registered in memory in advance. When one of these programs is selected and the cycle start switch on the machine operator’s panel is pressed, automatic operation starts, and the cycle start LED goes on.

When the feed hold switch on the machine operator’s panel is pressed during automatic operation, automatic operation is stopped temporarily. When the cycle start switch is pressed again, automatic operation is restarted.

When the [RESET] key on the MDI panel is pressed, automatic operation terminates and the reset state is entered.

The following procedure is given as an example. For actual operation, refer to the manual supplied by the machine tool builder.

Procedure for Memory Operation

1. Press the MEMORY mode selection switch.

2. Select a program from the registered programs. To do this, follow the steps below.
 2–1 Press [PROG] to display the program screen.
 2–2 Press address [O].
 2–3 Enter a program number using the numeric keys.
 2–4 Press the [O SRH] soft key.

3. Press the cycle start switch on the machine operator’s panel. Automatic operation starts, and the cycle start LED goes on. When automatic operation terminates, the cycle start LED goes off.

4. To stop or cancel memory operation midway through, follow the steps below.

 a. Stopping memory operation
 Press the feed hold switch on the machine operator’s panel. The feed hold LED goes on and the cycle start LED goes off. The machine responds as follows:
 (i) When the machine was moving, feed operation decelerates and stops.
 (ii) When dwell was being performed, dwell is stopped.
 (iii) When M, S, or T was being executed, the operation is stopped after M, S, or T is finished.
 When the cycle start switch on the machine operator’s panel is pressed while the feed hold LED is on, machine operation restarts.

 b. Terminating memory operation
 Press the [RESET] key on the MDI panel.
 Automatic operation is terminated and the reset state is entered.
When a reset is applied during movement, movement decelerates then stops.

Explanation

Memory operation

After memory operation is started, the following are executed:

1. A one-block command is read from the specified program.
2. The block command is decoded.
3. The command execution is started.
4. The command in the next block is read.
5. Buffering is executed. That is, the command is decoded to allow immediate execution.
6. Immediately after the preceding block is executed, execution of the next block can be started. This is because buffering has been executed.
7. Hereafter, memory operation can be executed by repeating the steps (4) to (6).

Stopping and terminating memory operation

Memory operation can be stopped using one of two methods: Specify a stop command, or press a key on the machine operator’s panel.

- The stop commands include M00 (program stop), M01 (optional stop), and M02 and M30 (program end).
- There are two keys to stop memory operation: The feed hold key and reset key.

- **Program stop (M00)**

 Memory operation is stopped after a block containing M00 is executed. When the program is stopped, all existing modal information remains unchanged as in single block operation. The memory operation can be restarted by pressing the cycle start button. Operation may vary depending on the machine tool builder. Refer to the manual supplied by the machine tool builder.

- **Optional stop (M01)**

 Similarly to M00, memory operation is stopped after a block containing M01 is executed. This code is only effective when the Optional Stop switch on the machine operator’s panel is set to ON. Operation may vary depending on the machine tool builder. Refer to the manual supplied by the machine tool builder.

- **Program end (M02, M30)**

 When M02 or M30 (specified at the end of the main program) is read, memory operation is terminated and the reset state is entered. In some machines, M30 returns control to the top of the program. For details, refer to the manual supplied by the machine tool builder.

- **Feed hold**

 When Feed Hold button on the operator’s panel is pressed during memory operation, the tool decelerates to a stop at a time.

- **Reset**

 Automatic operation can be stopped and the system can be made to the reset state by using key on the MDI or external reset signal. When reset operation is applied to the system during a tool moving status, the motion is slowed down then stops.

- **Optional block skip**

 When the optional block skip switch on the machine operator’s panel is turned on, blocks containing a slash (/) are ignored.
Calling a subprogram stored in an external input/output device

A file (subprogram) in an external input/output device such as a Floppy Cassette can be called and executed during memory operation. For details, see Section III–4.5.
In the MDI mode, a program consisting of up to 10 lines can be created in the same format as normal programs and executed from the MDI panel. MDI operation is used for simple test operations. The following procedure is given as an example. For actual operation, refer to the manual supplied by the machine tool builder.

Procedure for MDI Operation

1. Press the MDI mode selection switch.

2. Press the PROG function key on the MDI panel to select the program screen. The following screen appears:

 PROGRAM (MDI) 0010 0000

 O0000;

 G00 G90 G94 G40 G80 G50 G54 G69
 G17 G22 G21 G49 G98 G67 G64 G15
 B H M
 T D
 F S
 >-

 MDI **** **** **** 20:40:05

 (PRGRM) (MDI) (CURRT) (NEXT) (OPRT)

 Program number O0000 is entered automatically.

3. Prepare a program to be executed by an operation similar to normal program editing. M99 specified in the last block can return control to the beginning of the program after operation ends. Word insertion, modification, deletion, word search, address search, and program search are available for programs created in the MDI mode. For program editing, see Chapter III–9.

4. To entirely erase a program created in MDI mode, use one of the following methods:

 a. Enter address O, then press the DELETE key on the MDI panel.

 b. Alternatively, press the RESET key. In this case, set bit 7 of parameter 3203 to 1 in advance.

5. To execute a program, set the cursor on the head of the program. (Start from an intermediate point is possible.) Push Cycle Start button on the operator’s panel. By this action, the prepared program will start. (For the two-path control, select the tool post to be operated with the tool post selection switch on the machine operator’s panel beforehand.)
When the program end (M02, M30) or ER(%) is executed, the prepared program will be automatically erased and the operation will end.

By command of M99, control returns to the head of the prepared program.

<table>
<thead>
<tr>
<th>PROGRAM (MDI)</th>
<th>O0001 N00003</th>
</tr>
</thead>
<tbody>
<tr>
<td>G00 X100.0 Z200. ;</td>
<td></td>
</tr>
<tr>
<td>M03 ;</td>
<td></td>
</tr>
<tr>
<td>G01 Z120.0 F500 ;</td>
<td></td>
</tr>
<tr>
<td>M93 P9010 ;</td>
<td></td>
</tr>
<tr>
<td>G00 Z0.0 ;</td>
<td></td>
</tr>
<tr>
<td>G00 G90 G94 G40 G80 G50 G54 G69</td>
<td></td>
</tr>
<tr>
<td>G17 G22 G21 G49 G98 G67 G64 G15</td>
<td></td>
</tr>
<tr>
<td>B H M</td>
<td></td>
</tr>
<tr>
<td>T D</td>
<td></td>
</tr>
<tr>
<td>F S</td>
<td></td>
</tr>
</tbody>
</table>

6 To stop or terminate MDI operation in midway through, follow the steps below.

a. Stopping MDI operation

Press the feed hold switch on the machine operator’s panel. The feed hold LED goes on and the cycle start LED goes off. The machine responds as follows:

(i) When the machine was moving, feed operation decelerates and stops.
(ii) When dwell was being performed, dwell is stopped.
(iii) When M, S, or T was being executed, the operation is stopped after M, S, or T is finished.

When the cycle start switch on the machine operator’s panel is pressed, machine operation restarts.

b. Terminating MDI operation

Press the [RESET] key on the MDI panel.

Automatic operation is terminated and the reset state is entered. When a reset is applied during movement, movement decelerates then stops.

Explanation

The previous explanation of how to execute and stop memory operation also applies to MDI operation, except that in MDI operation, M30 does not return control to the beginning of the program (M99 performs this function).

- Erasing the program

Programs prepared in the MDI mode will be erased in the following cases:

- In MDI operation, if M02, M30 or ER(%) is executed.
 (If bit 6 (MER) of parameter No. 3203 is set to 1, however, the program is erased when execution of the last block of the program is completed by single-block operation.)
• In **MEMORY** mode, if memory operation is performed.
• In **EDIT** mode, if any editing is performed.
• Background editing is performed.
• When **O** and **DELETE** keys were pressed.
• Upon reset when bit 7 (MCL) of parameter No. 3203 is set to 1

Restart

After the editing operation during the stop of MDI operation was done, operation starts from the current cursor position.

Editing a program during MDI operation

A program can be edited during MDI operation. The editing of a program, however, is disabled until the CNC is reset, when bit 5 (MIE) of parameter No. 3203 is set accordingly.

Limitation

Program registration

Programs created in MDI mode cannot be registered.

Number of lines in a program

A program can have as many lines as can fit on one page of the screen. A program consisting of up to six lines can be created. When parameter MDL (No. 3107 #7) is set to 0 to specify a mode that suppresses the display of continuous–state information, a program of up to 10 lines can be created. If the created program exceeds the specified number of lines, % (ER) is deleted (prevents insertion and modification).

Subprogram nesting

Calls to subprograms (M98) can be specified in a program created in the MDI mode. This means that a program registered in memory can be called and executed during MDI operation. In addition to the main program executed by automatic operation, up to two levels of subprogram nesting are allowed (when the custom macro option is provided, up to four levels are allowed).

![Fig. 4.2 Nesting level of subprograms called from the MDI program](image)

Macro call

When the custom macro option is provided, macro programs can also be created, called, and executed in the MDI mode. However, macro call commands cannot be executed when the mode is changed to MDI mode after memory operation is stopped during execution of a subprogram.

Memory area

When a program is created in the MDI mode, an empty area in program memory is used. If program memory is full, no programs can be created in the MDI mode.
4.3 PROGRAM RESTART

This function specifies Sequence No. or Block No. of a block to be restarted when a tool is broken down or when it is desired to restart machining operation after a day off, and restarts the machining operation from that block. It can also be used as a high-speed program check function.

There are two restart methods: the P-type method and Q-type method.

<table>
<thead>
<tr>
<th>P TYPE</th>
<th>Operation can be restarted anywhere. This restart method is used when operation is stopped because of a broken tool.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Q TYPE</th>
<th>Before operation can be restarted, the machine must be moved to the programmed start point (machining start point)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Procedure for Program restart by Specifying a sequence number

Procedure 1

1. Retract the tool and replace it with a new one. When necessary, change the offset. (Go to step 2.)

2. When power is turned ON or emergency stop is released, perform all necessary operations at that time, including the reference position return.

3. Move the machine manually to the program starting point (machining start point), and keep the modal data and coordinate system in the same conditions as at the machining start.

4. If necessary, modify the offset amount.

Procedure 2

1. Turn the program restart switch on the machine operator’s panel ON.

2. Press function [PROG] key to display the desired program.

3. Find the program head.

4. Enter the sequence number of the block to be restarted, then press the [P TYPE] or [Q TYPE] soft key.

If the same sequence number appears more than once, the location of the target block must be specified. Specify a frequency and a sequence number.
The sequence number is searched for, and the program restart screen appears on the screen.

![Program Restart Screen]

DESTINATION shows the position at which machining is to restart. **DISTANCE TO GO** shows the distance from the current tool position to the position where machining is to restart. A number to the left of each axis name indicates the order of axes (determined by parameter setting) along which the tool moves to the restart position. The coordinates and amount of travel for restarting the program can be displayed for up to five axes. If your system supports six or more axes, pressing the [RSTR] soft key again displays the data for the sixth and subsequent axes. (The program restart screen displays only the data for CNC-controlled axes.)

M: Fourteen most recently specified M codes
T: Two most recently specified T codes
S: Most recently specified S code

Codes are displayed in the order in which they are specified. All codes are cleared by a program restart command or cycle start in the reset state.

6. Turn the program restart switch OFF. At this time, the figure at the left side of axis name DISTANCE TO GO blinks.

7. Check the screen for the M, S, and T codes to be executed. If they are found, enter the MDI mode, then execute the M, S and T functions. After execution, restore the previous mode. These codes are not displayed on the program restart screen.

8. Check that the distance indicated under DISTANCE TO GO is correct. Also check whether there is the possibility that the tool might hit a workpiece or other objects when it moves to the machining restart position. If such a possibility exists, move the tool manually to a position from which the tool can move to the machining restart position without encountering any obstacles.

9. Press the cycle start button. The tool moves to the machining restart position at the dry run feedrate sequentially along axes in the order specified by parameter settings (No. 7310). Machining is then restarted.
Procedure for Program Restart by Specifying a Block Number

Procedure 1

[P TYPE]

1. Retract the tool and replace it with a new one. When necessary, change the offset. (Go to step 2.)

[Q TYPE]

1. When power is turned ON or emergency stop is released, perform all necessary operations at that time, including the reference position return.

2. Move the machine manually to the program starting point (machining start point), and keep the modal data and coordinate system in the same conditions as at the machining start.

3. If necessary, modify the offset amount.

Procedure 2

[COMMON TO P TYPE / Q TYPE]

1. Turn the program restart switch on the machine operator’s panel ON.

2. Press function PROG key to display the desired program.

3. Find the program head. Press function RESET key.

4. Enter the number of the block to be restarted then press the [P TYPE] or [Q TYPE] soft key. The block number cannot exceed eight digits.

5. The block number is searched for, and the program restart screen appears on the CRT display.

```
PROGRAM RESTART O0002 N01000

DESTINATION
X 57.096
Z 56.943
M1 2
1 2
1 2
1 2
1

DISTANCE TO GO
X 1.459
Z 7.320
T
S

MEM 10 : 10 : 40

[ FL.SDL ] [ (OPRT) ]
```

DESTINATION shows the position at which machining is to restart. DISTANCE TO GO shows the distance from the current tool position to the position where machining is to restart. A number to the left of each axis name indicates the order of axes (determined by parameter setting) along which the tool moves to the restart position.
The coordinates and amount of travel for restarting the program can be displayed for up to five axes. If your system supports six or more axes, pressing the [RSTR] soft key again displays the data for the sixth and subsequent axes. (The program restart screen displays only the data for CNC–controlled axes.)

M: Fourteen most recently specified M codes
T: Two most recently specified T codes
S: Most recently specified S code
B: Most recently specified B code

Codes are displayed in the order in which they are specified. All codes are cleared by a program restart command or cycle start in the reset state.

6 Turn the program restart switch OFF. At this time, the figure at the left side of axis name DISTANCE TO GO blinks.

7 Check the screen for the M, S, T, and B codes to be executed. If they are found, enter the MDI mode, then execute the M, S, T, and B functions. After execution, restore the previous mode. These codes are not displayed on the program restart screen.

8 Check that the distance indicated under DISTANCE TO GO is correct. Also check whether there is the possibility that the tool might hit a workpiece or other objects when it moves to the machining restart position. If such a possibility exists, move the tool manually to a position from which the tool can move to the machining restart position without encountering any obstacles.

9 Press the cycle start button. The tool moves to the machining restart position at the dry run feedrate sequentially along axes in the order specified by parameter settings (No. 7310). Machining is then restarted.

Explanations

- **Block number**

When the CNC is stopped, the number of executed blocks is displayed on the program screen or program restart screen. The operator can specify the number of the block from which the program is to be restarted, by referencing the number displayed. The displayed number indicates the number of the block that was executed most recently. For example, to restart the program from the block at which execution stopped, specify the displayed number, plus one.

The number of blocks is counted from the start of machining, assuming one NC line of a CNC program to be one block.

< Example 1 >

<table>
<thead>
<tr>
<th>CNC Program</th>
<th>Number of blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>O0001 ;</td>
<td>1</td>
</tr>
<tr>
<td>G90 G92 X0 Y0 Z0 ;</td>
<td>2</td>
</tr>
<tr>
<td>G01 X100, F100 ;</td>
<td>3</td>
</tr>
<tr>
<td>G03 X01 –50, F50 ;</td>
<td>4</td>
</tr>
<tr>
<td>M30 ;</td>
<td>5</td>
</tr>
</tbody>
</table>
4. AUTOMATIC OPERATION

< Example 2 >

<table>
<thead>
<tr>
<th>CNC Program</th>
<th>Number of blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>O0001 ;</td>
<td>1</td>
</tr>
<tr>
<td>G90 G92 X0 Y0 Z0 ;</td>
<td>2</td>
</tr>
<tr>
<td>G90 G00 Z100. ;</td>
<td>3</td>
</tr>
<tr>
<td>G81 X100. Y0. Z–120. R–80. F50. ;</td>
<td>4</td>
</tr>
<tr>
<td>#1 = #1 + 1 ;</td>
<td>4</td>
</tr>
<tr>
<td>#2 = #2 + 1 ;</td>
<td>4</td>
</tr>
<tr>
<td>#3 = #3 + 1 ;</td>
<td>4</td>
</tr>
<tr>
<td>G00 X0 Z0 ;</td>
<td>5</td>
</tr>
<tr>
<td>M30 ;</td>
<td>6</td>
</tr>
</tbody>
</table>

Macro statements are not counted as blocks.

- Storing / clearing the block number
 The block number is held in memory while no power is supplied. The number can be cleared by cycle start in the reset state.

- Block number when a program is halted or stopped
 The program screen usually displays the number of the block currently being executed. When the execution of a block is completed, the CNC is reset, or the program is executed in single–block stop mode, the program screen displays the number of the program that was executed most recently.
 When a CNC program is halted or stopped by feed hold, reset, or single–block stop, the following block numbers are displayed:
 - Feed hold : Block being executed
 - Reset : Block executed most recently
 - Single–block stop : Block executed most recently
 For example, when the CNC is reset during the execution of block 10, the displayed block number changes from 10 to 9.

- MDI intervention
 When MDI intervention is performed while the program is stopped by single–block stop, the CNC commands used for intervention are not counted as a block.

- Block number exceeding eight digits
 When the block number displayed on the program screen exceeds eight digits, the block number is reset to 0 and counting continues.

Limitation

- P–type restart
 Under any of the following conditions, P–type restart cannot be performed:
 - When automatic operation has not been performed since the power was turned on
 - When automatic operation has not been performed since an emergency stop was released
 - When automatic operation has not been performed since the coordinate system was changed or shifted (change in an external offset from the workpiece reference point)

- Restart block
 The block to be restarted need not be the block which was interrupted; operation can restart with any block. When P–type restart is performed, the restart block must use the same coordinate system as when operation was interrupted.
4. AUTOMATIC OPERATION

Single block

When single block operation is ON during movement to the restart position, operation stops every time the tool completes movement along an axis. When operation is stopped in the single block mode, MDI intervention cannot be performed.

Manual intervention

During movement to the restart position, manual intervention can be used to perform a return operation for an axis if it has not yet been performed for the axis. A return operation cannot be done further on axes for which a return has already been completed.

Reset

Never reset during the time from the start of a search at restart until machining is restarted. Otherwise, restart must be performed again from the first step.

Manual absolute

Regardless of whether machining has started or not, manual operation must be performed when the manual absolute mode is on.

Reference position return

If no absolute–position detector (absolute pulse coder) is provided, be sure to perform reference position return after turning on the power and before performing restart.

Alarm

<table>
<thead>
<tr>
<th>Alarm No.</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>071</td>
<td>The specified block number for restarting the program is not found.</td>
</tr>
<tr>
<td>094</td>
<td>After interruption, a coordinate system was set, then P–type restart was specified.</td>
</tr>
<tr>
<td>095</td>
<td>After interruption, the coordinate system shift was changed, then P–type restart was specified.</td>
</tr>
<tr>
<td>096</td>
<td>After interruption, the coordinate system was changed, then P–type restart was specified.</td>
</tr>
<tr>
<td>097</td>
<td>When automatic operation has not been performed since the power was turned on, emergency stop was released, or P/S alarm (Nos. 094 to 097) was reset, P–type restart was specified.</td>
</tr>
<tr>
<td>098</td>
<td>After the power was turned on, restart operation was performed without reference position return, but a G28 command was found in the program.</td>
</tr>
<tr>
<td>099</td>
<td>A move command was specified from the MDI panel during a restart operation.</td>
</tr>
<tr>
<td>5020</td>
<td>An erroneous parameter was specified for restarting a program.</td>
</tr>
</tbody>
</table>
WARNING
As a rule, the tool cannot be returned to a correct position under the following conditions.

- Special care must be taken in the following cases since none of them cause an alarm:
 - Manual operation is performed when the manual absolute mode is OFF.
 - Manual operation is performed when the machine is locked.
 - When the mirror image is used.
 - When manual operation is performed in the course of axis movement for returning operation.
 - When the program restart is commanded for a block between the block for skip cutting and subsequent absolute command block.
 - When program restart specified for an intermediate block for a multiple repetitive canned cycle.
4.4 SCHEDULING FUNCTION

The schedule function allows the operator to select files (programs) registered on a floppy-disk in an external input/output device (Handy File, Floppy Cassette, or FA Card) and specify the execution order and number of repetitions (scheduling) for performing automatic operation. It is also possible to select only one file from the files in the external input/output device and execute it during automatic operation.

<table>
<thead>
<tr>
<th>FILE DIRECTORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>FILE NO.</td>
</tr>
<tr>
<td>0001</td>
</tr>
<tr>
<td>0002</td>
</tr>
<tr>
<td>0003</td>
</tr>
<tr>
<td>0004</td>
</tr>
</tbody>
</table>

List of files in an external input/output device

Set file number and number of repetitions.

<table>
<thead>
<tr>
<th>ORDER FILE NO</th>
<th>REPETITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>0002</td>
</tr>
<tr>
<td>02</td>
<td>0033</td>
</tr>
<tr>
<td>03</td>
<td>0004</td>
</tr>
<tr>
<td>04</td>
<td>0001</td>
</tr>
</tbody>
</table>

Scheduling screen

Executing automatic operation

Procedure for Scheduling Function

1. Press the MEMORY switch on the machine operator’s panel, then press the [PROG] function key on the MDI panel.

2. Press the rightmost soft key (continuous menu key), then press the [FL. SDL] soft key. A list of files registered in the Floppy Cassette is displayed on screen No. 1. To display more files that are not displayed on this screen, press the page key on the MDI panel. Files registered in the Floppy Cassette can also be displayed successively.
4. AUTOMATIC OPERATION

FILE DIRECTORY

CURRENT SELECTED: SCHEDULE

<table>
<thead>
<tr>
<th>NO.</th>
<th>FILE NAME</th>
<th>(METER)</th>
<th>VOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>SCHEDULE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0001</td>
<td>PARAMETER</td>
<td>58.5</td>
<td></td>
</tr>
<tr>
<td>0002</td>
<td>ALL PROGRAM</td>
<td>11.0</td>
<td></td>
</tr>
<tr>
<td>0003</td>
<td>O0001</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>0004</td>
<td>O0002</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>0005</td>
<td>O0010</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>0006</td>
<td>O0020</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>0007</td>
<td>O0040</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>0008</td>
<td>O0050</td>
<td>1.9</td>
<td></td>
</tr>
</tbody>
</table>

FILE DIRECTORY

CURRENT SELECTED: O0040

<table>
<thead>
<tr>
<th>NO.</th>
<th>FILE NAME</th>
<th>(METER)</th>
<th>VOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>SCHEDULE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0001</td>
<td>PARAMETER</td>
<td>58.5</td>
<td></td>
</tr>
<tr>
<td>0002</td>
<td>ALL PROGRAM</td>
<td>11.0</td>
<td></td>
</tr>
<tr>
<td>0003</td>
<td>O0001</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>0004</td>
<td>O0002</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>0005</td>
<td>O0010</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>0006</td>
<td>O0020</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>0007</td>
<td>O0040</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>0008</td>
<td>O0050</td>
<td>1.9</td>
<td></td>
</tr>
</tbody>
</table>

Press the [(OPRT)] and [SELECT] soft keys to display “SELECT FILE NO.” (on screen No. 2). Enter a file number, then press the [F SET] and [EXEC] soft keys. The file for the entered file number is selected, and the file name is indicated after “CURRENT SELECTED:”.

Press the REMOTE switch on the machine operator’s panel to enter the RMT mode, then press the cycle start switch. The selected file is executed. For details on the REMOTE switch, refer to the manual supplied by the machine tool builder. The selected file number is indicated at the upper right corner of the screen as an F number (instead of an O number).
4. AUTOMATIC OPERATION

Procedure for executing the scheduling function

1. Display the list of files registered in the Floppy Cassette. The display procedure is the same as in steps 1 and 2 for executing one file.

2. On screen No. 2, press the (OPRT) and SELECT soft keys to display “SELECT FILE NO.”

3. Enter file number 0, and press the [F SET], and [EXEC] soft keys. “SCHEDULE” is indicated after “CURRENT SELECTED:”.

4. Press the left most soft key (return menu key) and the [SCHDUL] soft key. Screen No. 4 appears.

Move the cursor and enter the file numbers and number of repetitions in the order in which to execute the files. At this time, the current number of repetitions “CUR.REP” is 0.

5. Press the REMOTE switch on the machine operator’s panel to enter the RMT “mode, then press the start switch. The files are executed in the specified order. When a file is being executed, the cursor is positioned at the number of that file. The current number of repetitions CUR.REP is increased when M02 or M30 is executed in the program being run.
OPERATION

4. AUTOMATIC OPERATION

FILE DIRECTORY

<table>
<thead>
<tr>
<th>ORDER</th>
<th>FILE NO.</th>
<th>REQ.REP</th>
<th>CUR.REP</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>00007</td>
<td>00007</td>
<td>00007</td>
</tr>
<tr>
<td>02</td>
<td>00003</td>
<td>00003</td>
<td>00003</td>
</tr>
<tr>
<td>03</td>
<td>00004</td>
<td>00004</td>
<td>00004</td>
</tr>
<tr>
<td>04</td>
<td>00005</td>
<td>00005</td>
<td>00005</td>
</tr>
<tr>
<td>05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMT</td>
<td></td>
<td></td>
<td>10:10:40</td>
</tr>
</tbody>
</table>

Screen No.5

Explanations

- **Specifying no file number**
 If no file number is specified on screen No. 4 (the file number field is left blank), program execution is stopped at that point. To leave the file number field blank, press numeric key 0 then INPUT.

- **Endless repetition**
 If a negative value is set as the number of repetitions, <LOOP> is displayed, and the file is repeated indefinitely.

- **Clear**
 When the [OPRT], [CLEAR], and [EXEC] soft keys are pressed on screen No. 4, all data is cleared. However, these keys do not function while a file is being executed.

- **Return to the program screen**
 When the [PRGRM] soft key is pressed on screen No. 1, 2, 3, 4, or 5, the program screen is displayed.

Limitation

- **Number of repetitions**
 Up to 9999 can be specified as the number of repetitions. If 0 is set for a file, the file becomes invalid and is not executed.

- **Number of files registered**
 By pressing the page key on screen No. 4, up to 20 files can be registered.

- **M code**
 When M codes other than M02 and M30 are executed in a program, the current number of repetitions is not increased.

- **Displaying the floppy disk directory during file execution**
 During the execution of file, the floppy directory display of background editing cannot be referenced.

- **Restarting automatic operation**
 To resume automatic operation after it is suspended for scheduled operation, press the reset button.
Alarm

<table>
<thead>
<tr>
<th>Alarm No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>086</td>
<td>An attempt was made to execute a file that was not registered in the floppy disk.</td>
</tr>
<tr>
<td>210</td>
<td>M198 and M99 were executed during scheduled operation, or M198 was executed during DNC operation.</td>
</tr>
</tbody>
</table>
4.5 SUBPROGRAM CALL FUNCTION (M198)

The subprogram call function is provided to call and execute subprogram files stored in an external input/output device (Handy File, FLOPPY CASSETTE, FA Card) during memory operation. When the following block in a program in CNC memory is executed, a subprogram file in the external input/output device is called:

To use this function, the Floppy Cassette directory display option must be installed.

Format

1. FS15 tape format

M198 PLLLLLL LLLLLL ;

Number of repetitions
File number for a file in the I/O device
I/O devices call instruction

2. Other than FS15 tape format

M198 PLLLLLL LLLLLL ;

File number for a file in the I/O device
Number of repetitions
I/O devices call instruction

Explanation

The subprogram call function is enabled when parameter No.0102 for the input/output device is set to 3. When the custom macro option is provided, either format 1 or 2 can be used. A different M code can be used for a subprogram call depending on the setting of parameter No.6030. In this case, M198 is executed as a normal M code. The file number is specified at address P. If the SBP bit (bit 2) of parameter No.3404 is set to 1, a program number can be specified. When a file number is specified at address P, Fxxxx is indicated instead of Oxxxx.

<table>
<thead>
<tr>
<th>Programs in memory execution mode</th>
<th>Program in the external input/output device</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>0123 File number</td>
</tr>
<tr>
<td>N2</td>
<td></td>
</tr>
<tr>
<td>N3 M198 P0003 0123 ;</td>
<td></td>
</tr>
<tr>
<td>N4</td>
<td></td>
</tr>
<tr>
<td>N5</td>
<td></td>
</tr>
</tbody>
</table>

: First call/return

: Second call/return

: Third call/return

Fig. 4.5 Program flow when M198 is specified
Restrictions

NOTE
1 When M198 in the program of the file saved in a floppy cassette is executed, a P/S alarm (No.210) is given. When a program in the memory of CNC is called and M198 is executed during execution of a program of the file saved in a floppy cassette, M198 is changed to an ordinary M-code.
2 When MDI is intervened and M198 is executed after M198 is commanded in the memory mode, M198 is changed to an ordinary M-code. When the reset operation is done in the MDI mode after M198 is commanded in the MEMORY mode, it does not influence on the memory operation and the operation is continued by restarting it in the MEMORY mode.
4.6 MANUAL HANDLE INTERRUPTION

The movement by manual handle operation can be done by overlapping it with the movement by automatic operation in the automatic operation mode.

![Diagram of Manual Handle Interruption](image)

Fig. 4.6 Manual handle interruption

- Handle interruption axis selection signals
 - For the handle interruption axis selection signals, refer to the manual supplied by the machine tool builder.

During automatic operation, handle interruption is enabled for an axis if the handle interruption axis selection signal for that axis is on. Handle interruption is performed by turning the handle of the manual pulse generator.

WARNING

The travel distance by handle interruption is determined according to the amount by which the manual pulse generator is turned and the handle feed magnification (x1, x10, xM, xN). Since this movement is not accelerated or decelerated, it is very dangerous to use a large magnification value for handle interruption. The move amount per scale at x1 magnification is 0.001 mm (metric output) or 0.0001 inch (inch output).

NOTE

Handle interruption is disabled when the machine is locked during automatic operation.
Explanations

- **Relation with other functions**
 The following table indicates the relation between other functions and the movement by handle interrupt.

<table>
<thead>
<tr>
<th>Display</th>
<th>Relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine lock</td>
<td>Machine lock is effective. The tool does not move even when this signal turns on.</td>
</tr>
<tr>
<td>Interlock</td>
<td>Interlock is effective. The tool does not move even when this signal turns on.</td>
</tr>
<tr>
<td>Mirror image</td>
<td>Mirror image is not effective. Interrupt functions on the plus direction by plus direction command, even if this signal turns on.</td>
</tr>
</tbody>
</table>

- **Position display**
 The following table shows the relation between various position display data and the movement by handle interrupt.

<table>
<thead>
<tr>
<th>Display</th>
<th>Relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute coordinate value</td>
<td>Handle interruption does not change absolute coordinates.</td>
</tr>
<tr>
<td>Relative coordinate value</td>
<td>Handle interruption does not change relative coordinates.</td>
</tr>
<tr>
<td>Machine coordinate value</td>
<td>Machine coordinates are changed by the travel distance specified by handle interruption.</td>
</tr>
</tbody>
</table>

- **Travel distance display**
 Press the function key POS, then press the chapter selection soft key [HNDL].
 The move amount by the handle interrupt is displayed. The following 4 kinds of data are displayed concurrently.

```
HANDLE INTERRUPTION
(INPUT UNIT)          (OUTPUT UNIT)
X  69.594            X  69.594
Z  61.439            Z  61.439

(RELATIVE)          (DISTANCE TO GO)
U  0.000            X  0.000
W  0.000            Z  0.000

PART COUNT 287
RUN TIME 1H 12M CYCLE TIME 0H 0M 0S
MDI     10 : 29 : 51
(ABS)  [ HNDL ] [ OPRT ]
```

(a) **INPUT UNIT**:
Handle interrupt move amount in input unit system
Indicates the travel distance specified by handle interruption according to the least input increment.

(b) **OUTPUT UNIT**:
Handle interrupt move amount in output unit system
Indicates the travel distance specified by handle interruption according to the least command increment.
(c) RELATIVE:
 Position in relative coordinate system
 These values have no effect on the travel distance specified by handle interruption.

(d) DISTANCE TO GO:
 The remaining travel distance in the current block has no effect on the travel distance specified by handle interruption.

The handle interrupt move amount is cleared when the manual reference position return ends every axis.
4.7 MIRROR IMAGE

During automatic operation, the mirror image function can be used for movement along an axis. To use this function, set the mirror image switch to ON on the machine operator’s panel, or set the mirror image setting to ON from the MDI.

![Diagram showing X-axis mirror image and tool paths](image)

Fig. 4.7 Mirror image

Procedure

The following procedure is given as an example. For actual operation, refer to the manual supplied by the machine tool builder.

1. Press the single block switch to stop automatic operation. When the mirror image function is used from the beginning of operation, this step is omitted.

2. Press the mirror image switch for the target axis on the machine operator’s panel.

 Alternatively, turn on the mirror image setting by following the steps below:

 2–1. Set the MDI mode.

 2–2. Press the OFFSET function key.

 2–3. Press the [SETTING] soft key for chapter selection to display the setting screen.

 ![Setting screen](image)

 SETTING (MIRROR IMAGE) O0020 N00001

 MIRROR IMAGE X = 1 (0 : OFF 1 : ON)
 MIRROR IMAGE Z = 0 (0 : OFF 1 : OM)

 [OFFSET] [SETTING] [WORK] [OPRT]

 MEM ********** 14:47:57

2–4. Move the cursor to the mirror image setting position, then set the target axis to 1.
3 Enter an automatic operation mode (memory mode or MDI mode), then press the cycle start button to start automatic operation.

Explanations

- The mirror image function can also be turned on and off by setting bit 0 (MIRx) of parameter (No.0012) to 1 or 0.
- For the mirror image switches, refer to the manual supplied by the machine tool builder.

Restrictions

The direction of movement during manual operation, the direction of movement from an intermediate point to the reference position during automatic reference position return (G28).
4.8 MANUAL INTERVENTION AND RETURN

In cases such as when tool movement along an axis is stopped by feed hold during automatic operation so that manual intervention can be used to replace the tool: When automatic operation is restarted, this function returns the tool to the position where manual intervention was started. To use the conventional program restart function and tool withdrawal and return function, the switches on the operator’s panel must be used in conjunction with the MDI keys. This function does not require such operations.

Explanations

- **Manual absolute on/off**
 In manual absolute off mode, the tool does not return to the stop position, but instead operates according to the manual absolute on/off function.

- **Override**
 For the return operation, the dry run feedrate is used, and the jog feedrate override function is enabled.

- **Return operation**
 Return operation is performed according to positioning based on nonlinear interpolation.

- **Single block**
 If the single block stop switch is on during return operation, the tool stops at the stop position and restarts movement when the cycle start switch is pressed.

- **Cancellation**
 If a reset occurs or an alarm is issued during manual intervention or the return operation, this function is cancelled.

- **MDI mode**
 This function can be used in the MDI mode as well.

Restrictions

- **Enabling and disabling manual intervention and return**
 This function is enabled only when the automatic operation hold LED is on. When there is no travel distance remaining, this function has no effect even if a feed hold stop is performed with the automatic operation hold signal *SP (bit 5 of G008).

- **Offset**
 When the tool is replaced using manual intervention for a reason such as damage, the tool movement cannot be restarted by a changed offset in the middle of the interrupted block.

- **Machine lock, mirror image, and scaling**
 When performing manual intervention, never use the machine lock, mirror image, or scaling functions.
Example

1. The N1 block cuts a workpiece

2. The tool is stopped by pressing the feed hold switch in the middle of the N1 block (point A).

3. After retracting the tool manually to point B, tool movement is restarted.

4. After automatic return to point A at the dry run feedrate, the remaining move command of the N1 block is executed.

WARNING
When performing manual intervention, pay particular attention of machining and the shape of the workpiece so that the machine and tool are not damaged.
4.9 DNC OPERATION

By activating automatic operation during the DNC operation mode (RMT), it is possible to perform machining (DNC operation) while a program is being read in via reader/puncher interface, or remote buffer. If the floppy cassette directory display option is available, it is possible to select files (programs) saved in an external input/output unit of a floppy format (Handy File, Floppy Cassettes, or FA card) and specify (schedule) the sequence and frequency of execution for automatic operation.

To use the DNC operation function, it is necessary to set the parameters related to the reader/punch interface, and remote buffer in advance.

DNC OPERATION

Procedure

1. Search for the program (file) to be executed.
2. Press the REMOTE switch on the machine operator’s panel to set RMT mode, then press the cycle start switch. The selected file is executed. For details of the use of the REMOTE switch, refer to the relevant manual supplied by the machine tool builder.

- Program check screen
 (7 soft key type)

- Program screen
 (7 soft key type)
During DNC operation, the program currently being executed is displayed on the program check screen and program screen. The number of displayed program blocks depends on the program being executed. Any comment enclosed between a control–out mark (() and control–in mark ()) within a block is also displayed.

Explanations

- During DNC operation, programs and macro programs stored in memory can be called.

Limitations

- **Limit on number of characters**
 In program display, no more than 256 characters can be displayed. Accordingly, character display may be truncated in the middle of a block.

- **M198 (command for calling a program from within an external input/output unit)**
 In DNC operation, M198 cannot be executed. If M198 is executed, P/S alarm No. 210 is issued.

- **Custom macro**
 In DNC operation, custom macros can be specified, but no repeat instruction and branch instruction can be programmed. If a repeat instruction or branch instruction is executed, P/S alarm No. 123 is issued. When reserved words (such as IF, WHILE, COS, and NE) used with custom macros in DNC operation are displayed during program display, a blank is inserted between adjacent characters.

Example

[During DNC operation]

#102=SIN[#100] ; → #102 = S I N[#100] ;

IF[#100NE0]GOTO5 ; → I F[#100NE0] G O T O 5 ;

M99

When control is returned from a subprogram or macro program to the calling program during DNC operation, it becomes impossible to use a return command (M99P****) for which a sequence number is specified.
Alarm

<table>
<thead>
<tr>
<th>Number</th>
<th>Message</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>086</td>
<td>DR SIGNAL OFF</td>
<td>When entering data in the memory by using Reader / Puncher interface, the ready signal (DR) of reader / puncher was turned off. Power supply of I/O unit is off or cable is not connected or a P.C.B. is defective.</td>
</tr>
<tr>
<td>123</td>
<td>CAN NOT USE MACRO COMMAND IN DNC</td>
<td>Macro control command is used during DNC operation. Modify the program.</td>
</tr>
<tr>
<td>210</td>
<td>CAN NOT COMMAND M198/M199</td>
<td>Or M198 is executed in the DNC operation. Modify the program.</td>
</tr>
</tbody>
</table>
4.10
DNC OPERATION
WITH MEMORY CARD

4.10.1
Specification

“DNC operation with Memory Card” is a function that it is possible to perform machining with executing the program in the memory card, which is assembled to the memory card interface, where is the left side of the screen.

There are two methods to use this function as follows.

(a) By starting automatic operation (cycle start) during the DNC operation mode (RMT), it is possible to perform machining (DNC operation) while a program is being read from a memory card, as by using the external input/output unit such as a floppy cassette and so on. (Fig. 4.10.1 (a))

(b) It is possible to read sub–programs written in the memory card and execute them by the command Subprogram call (M198). (Fig. 4.10.1 (b))

![Fig. 4.10.1 (a)]

![Fig. 4.10.1 (b)]
4.10.2 Operations

4.10.2.1 DNC operation

Handling explanation

Please set the I/O channel (the parameter of No.20) to 4 in the setting screen in advance.

1. Change to RMT mode.
3. Push [>] soft key (continuance menu).
4. When [DNC–CD] soft key is pushed, the following screen is displayed.
5. The screen can be scrolled by page key. An arbitrary file number is input, and [F SRH] soft key is pushed. Then the arbitrary file name is displayed at the top of DNC operation (memory card) screen.
6. When the file number that is executed is input and the [DNC–ST] soft key is pushed, the file name that is selected is set to DNC FILE.
7. When the cycle start is done, the program that is selected is executed.

<table>
<thead>
<tr>
<th>NO.</th>
<th>FILE_NAME</th>
<th>SIZE</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td>MAIN. PRG</td>
<td>00013</td>
<td>99 02 03</td>
</tr>
<tr>
<td>0002</td>
<td>DNC1. PRG</td>
<td>50</td>
<td>99 03 23</td>
</tr>
<tr>
<td>0003</td>
<td>DNC2. PRG</td>
<td>30</td>
<td>99 03 24</td>
</tr>
<tr>
<td>0004</td>
<td>DNC3. PRG</td>
<td>32</td>
<td>99 03 24</td>
</tr>
<tr>
<td>0005</td>
<td>DNC4. PRG</td>
<td>50</td>
<td>99 03 23</td>
</tr>
<tr>
<td>0006</td>
<td>CNCPARAM. DAT</td>
<td>2304</td>
<td>99 03 24</td>
</tr>
<tr>
<td>0007</td>
<td>TOOL OF ST. DAT</td>
<td>038</td>
<td>99 03 24</td>
</tr>
<tr>
<td>0008</td>
<td>01234</td>
<td>170</td>
<td>99 03 24</td>
</tr>
<tr>
<td>0009</td>
<td>07777</td>
<td>520</td>
<td>99 03 24</td>
</tr>
</tbody>
</table>

DNC FILE NAME : MAIN. PRG

<table>
<thead>
<tr>
<th>RMT</th>
<th>14:20:23</th>
</tr>
</thead>
<tbody>
<tr>
<td>F SRH</td>
<td>DNC-ST</td>
</tr>
</tbody>
</table>
When the following block in a program in CNC memory is executed, a subprogram file in memory card is called.

Format

1. **Normal format**

```plaintext
M198 PCCCC CCCCC ;
```

- File number for a file in the memory card
- Number of repetition
- Memory card call instruction

2. **FS15 tape format**

```plaintext
M198 PCCCC LCCCC ;
```

- File number of repetition
- File number for a file in the memory card
- Memory card call instruction

Explanation

When the custom macro option is provided, both format 1 and 2 can be used. A different M code can be used for a subprogram call depending on the setting of parameter No. 6030. In this case, M198 is executed as a normal M code. The file number is specified at address P. If the SBP (bit 2) of parameter No. 3404 is set to 1, a program number can be specified. When a file number is specified at address P, Fxxxx is indicated instead of Oxxxx.

NOTE

Please set the I/O channel (the parameter of No. 20) to 4 in the setting screen in advance.
4.10.3 LIMITATION and NOTES

(1) The memory card cannot be accessed, such as display of memory card list and so on, during the DNC operation with memory card.

(2) It is possible to execute the DNC operation with memory card on multi path system. However, it is not possible to call programs from the plural paths at the same time.

(3) The selection of DNC operation file that is set at DNC OPERATION screen is cleared by the power supply turn off and on. After the power supply is turned on again, it is necessary to select the DNC operation file again.

(4) Please do not pull out and insert memory card during the DNC operation with memory card.

(5) It is not possible to call a program in the memory card from the DNC operation program.

(6) In case of using this function, the PMCIA card attachment written at section 6 must be used to prevent a poor connection of the memory card from occurring by vibration of the machine.

(7) In case of the stand-alone type i series that the display unit is a Display link unit, this function cannot be used.

(8) The memory card interface on the stand-alone type controller is not available. Please use the memory card interface on the display unit.

4.10.4 PARAMETER

<table>
<thead>
<tr>
<th>#7 (DNM)</th>
<th>Bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 : disable.</td>
<td></td>
</tr>
<tr>
<td>1 : enable.</td>
<td></td>
</tr>
</tbody>
</table>

[Data type] Bit
4.10.5
Connecting PCMCIA Card Attachment

4.10.5.1
Specification number

<table>
<thead>
<tr>
<th>Specification</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>A02B–0236–K160</td>
<td>For 7.2” LCD or 8.4” LCD</td>
</tr>
<tr>
<td>A02B–0236–K161</td>
<td>For 9.5” LCD or 10.4” LCD</td>
</tr>
</tbody>
</table>

4.10.5.2
Assembling

1) How to assemble to the unit
 Assemble an attachment guide and a control unit to the cabinet by screwing together as follow figure.
 The attachment guide is 1.6mm thick. Pay attention for the length of the screws when you assemble them.

2) How to mount the card
 (a) Insert the card to slit of the attachment. Please pay attention to the direction of the card. (Please mach the direction of ditch on the card.)
(b) Push up the card to the upper end of the attachment.

3) Assembling of the attachment
Insert the memory card with the attachment into the memory card interface as following figure. And, fix the attachment guide by screwing the screw of the attachment guide by manual.
4) Appearance after connection

NOTE
1. In both case of stand-alone type i series and LCD mounted type i series, the memory card interface where is the left side of the screen of the display unit. (The memory card interface on the stand-alone type controller is not available.)
2. It is impossible to assemble the display unit and the attachment guide from inside of the cabinet.
3. The memory card must be used in the condition, as the coolant cannot be poured directly on it.

4.10.6 Recommended Memory Card

<table>
<thead>
<tr>
<th>Maker</th>
<th>Type</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hitachi LTD</td>
<td>HB289016A4</td>
<td>16MB</td>
</tr>
<tr>
<td></td>
<td>HB289032A4</td>
<td>32MB</td>
</tr>
<tr>
<td></td>
<td>HB289160A4</td>
<td>160MB</td>
</tr>
<tr>
<td>Matushita electric</td>
<td>BN–012AB</td>
<td>12MB</td>
</tr>
<tr>
<td></td>
<td>BN–020AB</td>
<td>20MB</td>
</tr>
<tr>
<td></td>
<td>BN–040AB</td>
<td>40MB</td>
</tr>
<tr>
<td>SanDisk</td>
<td>SDP3B–4</td>
<td>4MB</td>
</tr>
<tr>
<td></td>
<td>SDP3B–20</td>
<td>20MB</td>
</tr>
<tr>
<td></td>
<td>SDP3B–40</td>
<td>40MB</td>
</tr>
</tbody>
</table>
The following functions are used to check before actual machining whether the machine operates as specified by the created program.

1. Machine Lock and Auxiliary Function Lock
2. Feedrate Override
3. Rapid Traverse Override
4. Dry Run
5. Single Block
5.1 MACHINE LOCK AND AUXILIARY FUNCTION LOCK

To display the change in the position without moving the tool, use machine lock. There are two types of machine lock, all-axis machine lock, which stops the movement along all axes, and specified-axis machine lock, which stops the movement along specified axes only. In addition, auxiliary function lock, which disables M, S, and T commands, is available for checking a program together with machine lock.

![Machine Lock Diagram](image)

Fig. 5.1 Machine lock

Procedure for Machine Lock and Auxiliary Function Lock

- **Machine Lock**

 Press the machine lock switch on the operator’s panel. The tool does not move but the position along each axis changes on the display as if the tool were moving. Some machines have a machine lock switch for each axis. On such machines, press the machine lock switches for the axes along which the tool is to be stopped. Refer to the appropriate manual provided by the machine tool builder for machine lock.

 WARNING

 The positional relationship between the workpiece coordinates and machine coordinates may differ before and after automatic operation using machine lock. In such a case, specify the workpiece coordinate system by using a coordinate setting command or by performing manual reference position return.

- **Auxiliary Function Lock**

 Press the auxiliary function lock switch on the operator’s panel. M, S, and T codes are disabled and not executed. Refer to the appropriate manual provided by the machine tool builder for auxiliary function lock.
Restrictions

- **M, S, T command by only machine lock**

 M, S, and T commands are executed in the machine lock state.

- **Reference position return under Machine Lock**

 When a G27, G28, or G30 command is issued in the machine lock state, the command is accepted but the tool does not move to the reference position and the reference position return LED does not go on.

- **M codes not locked by auxiliary function lock**

 M00, M01, M02, M30, M98, M99, and M198 (sub-program call) commands are executed even in the auxiliary function lock state. Subprogram calling M codes (parameter Nos. 6071 to 6079) and custom macro calling M codes (parameter Nos. 6080 to 6089) can also be executed.
5.2 FEEDRATE OVERRIDE

A programmed feedrate can be reduced or increased by a percentage (%) selected by the override dial. This feature is used to check a program. For example, when a feedrate of 100 mm/min is specified in the program, setting the override dial to 50% moves the tool at 50 mm/min.

![Fig. 5.2 Feedrate override](image)

Procedure for Feedrate Override

Set the feedrate override dial to the desired percentage (%) on the machine operator’s panel, before or during automatic operation. On some machines, the same dial is used for the feedrate override dial and manual continuous feedrate dial. Refer to the appropriate manual provided by the machine tool builder for feedrate override.

Restrictions

- **Override Range**
 The override that can be specified ranges from 0 to 254%. For individual machines, the range depends on the specifications of the machine tool builder.

- **Override during thread**
 During threading, the override is ignored and the feedrate remains as specified by program.
5.3 RAPID TRAVERSE OVERRIDE

An override of four steps (F0, 25%, 50%, and 100%) can be applied to the rapid traverse rate. F0 is set by a parameter (No. 1421).

![Rapid Traverse Override Diagram](image)

Fig. 5.3 Rapid traverse override

Procedure for Rapid Traverse Override

Select one of the four feedrates with the rapid traverse override switch during rapid traverse. Refer to the appropriate manual provided by the machine tool builder for rapid traverse override.

Explanation

The following types of rapid traverse are available. Rapid traverse override can be applied for each of them.

1) Rapid traverse by G00.
2) Rapid traverse during a canned cycle.
3) Rapid traverse in G27, G28 and G30.
4) Manual rapid traverse.
5) Rapid traverse of manual reference position return.
5.4 DRY RUN

The tool is moved at the feedrate specified by a parameter regardless of the feedrate specified in the program. This function is used for checking the movement of the tool under the state that the workpiece is removed from the table.

The dry run feedrate changes as shown in the table below according to the rapid traverse switch and parameters.

<table>
<thead>
<tr>
<th>Rapid traverse button</th>
<th>Program command</th>
<th>Feed</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>Rapid traverse rate</td>
<td>Dry run feedrate × JVmax × 2)</td>
</tr>
<tr>
<td>OFF</td>
<td>Dry run speed × JV, or rapid traverse rate × 1)</td>
<td>Dry run feedrate × JV</td>
</tr>
</tbody>
</table>

Max. cutting feedrate Setting by parameter No.1422
Rapid traverse rate Setting by parameter No.1420
Dry run feedrate Setting by parameter No.1410

JV: Jog feedrate override

*1) Dry run feedrate × JV when parameter RDR (bit 6 of No. 1401) is 1. Rapid traverse rate when parameter RDR is 0.

*2) Clamped to the maximum cutting feedrate

JVmax: Maximum value of jog feedrate override
5.5 SINGLE BLOCK

Pressing the single block switch starts the single block mode. When the cycle start button is pressed in the single block mode, the tool stops after a single block in the program is executed. Check the program in the single block mode by executing the program block by block.

Procedure for Single Block

1. Press the single block switch on the machine operator’s panel. The execution of the program is stopped after the current block is executed.

2. Press the cycle start button to execute the next block. The tool stops after the block is executed.

Refer to the appropriate manual provided by the machine tool builder for single block execution.
Explanation

- **Reference position return and single block**

 If G28 to G30 are issued, the single block function is effective at the intermediate point.

- **Single block during a canned cycle**

 In a canned cycle, the single block stop points are as follows.

 ![Diagram](image-url)

 Table: Tool path

<table>
<thead>
<tr>
<th>Tool path</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Straight cutting cycle</td>
<td>Tool path 1 to 4 is assumed as one cycle. After 4 is finished, a stop is made.</td>
</tr>
<tr>
<td>Taper cutting cycle</td>
<td>Tool path 1 to 4 is assumed as one cycle. After 4 is finished, a stop is made.</td>
</tr>
<tr>
<td>Straight threading cycle</td>
<td>Tool path 1 to 4 is assumed as one cycle. After 4 is finished, a stop is made.</td>
</tr>
<tr>
<td>Taper threading cycle</td>
<td>Tool path 1 to 4 is assumed as one cycle. After 4 is finished, a stop is made.</td>
</tr>
<tr>
<td>Straight end surface cutting cycle</td>
<td>Tool path 1 to 4 is assumed as one cycle. After 4 is finished, a stop is made.</td>
</tr>
<tr>
<td>Taper end surface cutting cycle</td>
<td>Tool path 1 to 4 is assumed as one cycle. After 4 is finished, a stop is made.</td>
</tr>
<tr>
<td>Finishing cycle</td>
<td>Tool path 1 to 7 is assumed as one cycle. After 7 is finished, a stop is made.</td>
</tr>
<tr>
<td>Outer surface rough machining cycle</td>
<td>Each tool path 1 to 4, 5 to 8, 9 to 12, 13 to 16 and 17 to 20 is assumed as one cycle. After each cycle is finished, a stop is made.</td>
</tr>
<tr>
<td>End surface rough machining cycle</td>
<td>Each tool path 1 to 4, 5 to 8, 9 to 12, 13 to 16 and 17 to 20 is assumed as one cycle. After each cycle is finished, a stop is made.</td>
</tr>
</tbody>
</table>

 This figure shows the case for G71. G72 is the same.

 Fig. 5.5 Single block during canned cycle (1/2)
5. TEST OPERATION

OPERATION

B–63604EN/01

5. TEST OPERATION

OPERATION

B–63604EN/01

G73
(Closed–loop cutting cycle)

G74
(End surface cutting–off cycle)
G75
(Outer/inner surface cutting–off cycle)

G76
(Multiple repetitive threading cycle)

- **Subprogram call and single block**

Single block stop is not performed in a block containing M98P_, M99; or G65.

However, single block stop is even performed in a block with M98P_ or M99 command, if the block contains an address other than O, N or P.

![Image of tool path and explanation]

Explanation

- Tool path 1 to 6 is assumed as one cycle. After 10 is finished, a stop is made.
- Tool path 1 to 10 is assumed as one cycle. After 10 is finished, a stop is made.
- Tool path 1 to 4 is assumed as one cycle. After 4 is finished, a stop is made.

Fig. 5.5 Single block during canned cycle (2/2)
To immediately stop the machine for safety, press the Emergency stop button. To prevent the tool from exceeding the stroke ends, Overtravel check and Stroke check are available. This chapter describes emergency stop, overtravel check, and stroke check.
6.1 EMERGENCY STOP

If you press Emergency Stop button on the machine operator’s panel, the machine movement stops in a moment.

![Fig. 6.1 Emergency stop](image)

This button is locked when it is pressed. Although it varies with the machine tool builder, the button can usually be unlocked by twisting it.

Explanation

EMERGENCY STOP interrupts the current to the motor. Causes of trouble must be removed before the button is released.
6.2 OVERTRAVEL

When the tool tries to move beyond the stroke end set by the machine tool limit switch, the tool decelerates and stops because of working the limit switch and an OVER TRAVEL is displayed.

![Graph showing deceleration and stop](image)

Fig. 6.2 Overtravel

Explanation

- **Overtravel during automatic operation**

 When the tool touches a limit switch along an axis during automatic operation, the tool is decelerated and stopped along all axes and an overtravel alarm is displayed.

- **Overtravel during manual operation**

 In manual operation, the tool is decelerated and stopped only along the axis for which the tool has touched a limit switch. The tool still moves along the other axes.

- **Releasing overtravel**

 Press the reset button to reset the alarm after moving the tool to the safety direction by manual operation. For details on operation, refer to the operator’s manual of the machine tool builder.

- **Alarm**

<table>
<thead>
<tr>
<th>No.</th>
<th>Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>506</td>
<td>Overtravel: +n</td>
<td>The tool has exceeded the hardware–specified overtravel limit along the positive nth axis (n: 1 to 4).</td>
</tr>
<tr>
<td>507</td>
<td>Overtravel: −n</td>
<td>The tool has exceeded the hardware–specified overtravel limit along the negative nth axis (n: 1 to 4).</td>
</tr>
</tbody>
</table>
6.3 STORED STROKE CHECK

There are areas which the tool cannot enter can be specified with stored stroke check 1, stored stroke check 2, and stored stroke check 3.

![Diagram showing stored stroke limits and forbidden area]

When the tool exceeds a stored stroke limit, an alarm is displayed and the tool is decelerated and stopped.

When the tool enters a forbidden area and an alarm is generated, the tool can be moved in the reverse direction from which the tool came.

Explanation

- **Stored stroke check 1**

 Parameters (Nos. 1320, 1321 or Nos. 1326, 1327) set boundary. Outside the area of the set limits is a forbidden area. The machine tool builder usually sets this area as the maximum stroke.

- **Stored stroke check 2 (G22, G23)**

 Parameters (Nos. 1322, 1323) or commands set these boundaries. Inside or outside the area of the limit can be set as the forbidden area. Parameter OUT (No. 1300#0) selects either inside or outside as the forbidden area.

In case of program command a G22 command forbids the tool to enter the forbidden area, and a G23 command permits the tool to enter the forbidden area. Each of G22; and G23; should be commanded independently of another commands in a block.

The command below creates or changes the forbidden area:
\[G \, 22X, Z, I, K; \]

\[A(X, Z) \]

\[B(I, K) \]

\[X > I, Z > K \]
\[X - I > \zeta \]
\[Z - K > \zeta \]

\(\zeta \) is the distance the tool travels in 8 ms. It is 2000 in least command increments when the feedrate is 15 m/min.

Fig. 6.3 (b) Creating or changing the forbidden area using a program

When setting the area by parameters, points A and B in the figure below must be set.

\[G \, 22X_1, Z_1, I, K; \]

\[A(X_1, Z_1) \]

\[B(X_2, Z_2) \]

\[X_1 > X_2, Z_1 > Z_2 \]
\[X_1 - X_2 > \zeta \]
\[Z_1 - Z_2 > \zeta \]

\(\zeta \) is the distance the tool travels in 8 ms. It is 2000 in least command increments when the feedrate is 15 m/min.

Fig. 6.3 (c) Creating or changing the forbidden area using a parameters

In stored stroke check 2, even if you mistake the order of the coordinate value of the two points, a rectangular, with the two points being the apexes, will be set as the area.

When you set the forbidden area \(X_1, Z_1, X_2, \) and \(Z_2 \) through parameters (Nos. 1322, 1323), the data should be specified by the distance from the reference position in the least command increment. (Output increment)

If set the forbidden area XZIK by a G22 command, specify the data by the distance from the reference position in the least input increment (Input increment.) The programmed data are then converted into the numerical values in the least command increment, and the values are set as the parameters.

** Stored stroke check 3 **

Set the boundary with parameters No. 1324 and 1325. The area inside the boundary becomes the forbidden area.
The parameter setting or programmed value (X, Z, I, and K) depends on which part of the tool or tool holder is checked for entering the forbidden area.

Confirm the checking position (the top of the tool or the tool chuck) before programming the forbidden area.

If point C (The top of the tool) is checked in Fig. 6.3 (d), the distance “c” should be set as the data for the stored stroke limit function. If point D (The tool chuck) is checked, the distance “d” must be set.

![Diagram](image_url)

Fig. 6.3(d) Setting the forbidden area

- **Checkpoint for the forbidden area**
- **Forbidden area overlapping**

Area can be set in piles.

![Diagram](image_url)

Fig. 6.3(e) Setting the forbidden area over lapping

- **Effective time for a forbidden area**

Each limit becomes effective after the power is turned on and manual reference position return or automatic reference position return by G28 has been performed.

After the power is turned on, if the reference position is in the forbidden area of each limit, an alarm is generated immediately. (Only in G22 mode for stored stroke limit 2).

- **Releasing the alarms**

When the tool has become immovable in the forbidden area, push the emergency stop button to release the forbidden condition and move the tool out of the forbidden area in the G23 mode; then, if the setting is wrong, correct it and perform the reference position return again.
• Change from G23 to G22 in a forbidden area

When G23 is switched to G22 in the forbidden area, the following results.
(1) When the forbidden area is inside, an alarm is informed in the next move.
(2) When the forbidden area is outside, an alarm is informed immediately.

NOTE
In setting a forbidden area, if the two points to be set are the same, the area is as follows:
(1) When the forbidden area is stored stroke check 1, all areas are forbidden areas.
(2) When the forbidden area is stored stroke check 2 or stored stroke check 3 all areas are movable areas.

• Overrun amount of stored stroke limit

If the maximum rapid traverse rate is F (mm/min), the maximum overrun amount, L (mm), of the stored stroke limit is obtained from the following expression:

\[
L \text{ (mm)} = \frac{F}{7500}
\]

The tool enters the specified inhibited area by up to L (mm). Bit 7 (BFA) of parameter No. 1300 can be used to stop the tool when it reaches a point L mm short of the specified area. In the case, the tool will not enter the inhibited area.

• Timing for displaying an alarm

Parameter BFA (bit 7 of No. 1300) selects whether an alarm is displayed immediately before the tool enters the forbidden area or immediately after the tool has entered the forbidden area.

Alarm

<table>
<thead>
<tr>
<th>Number</th>
<th>Message</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>OVER TRAVEL: +n</td>
<td>Exceeded the n-th axis (1–4) + side stored stroke limit 1.</td>
</tr>
<tr>
<td>501</td>
<td>OVER TRAVEL: −n</td>
<td>Exceeded the n-th axis (1–4) − side stored stroke limit 1.</td>
</tr>
<tr>
<td>502</td>
<td>OVER TRAVEL: +n</td>
<td>Exceeded the n-th axis (1–4) + side stored stroke limit 2.</td>
</tr>
<tr>
<td>503</td>
<td>OVER TRAVEL: −n</td>
<td>Exceeded the n-th axis (1–4) − side stored stroke limit 2.</td>
</tr>
<tr>
<td>504</td>
<td>OVER TRAVEL: +n</td>
<td>Exceeded the n-th axis (1–4) + side stored stroke limit 3.</td>
</tr>
<tr>
<td>505</td>
<td>OVER TRAVEL: −n</td>
<td>Exceeded the n-th axis (1–4) − side stored stroke limit 3.</td>
</tr>
</tbody>
</table>
The chuck–tailstock barrier function prevents damage to the machine by checking whether the tool tip fouls either the chuck or tailstock. Specify an area into which the tool may not enter (entry–inhibition area). This is done using the special setting screen, according to the shapes of the chuck and tailstock. If the tool tip should enter the set area during a machining operation, this function stops the tool and outputs an alarm message.

The tool can be cleared from the area only by retracting it in the direction opposite to that in which the tool entered the area.

Setting the chuck and tailstock barriers

- Setting the shapes of the chuck and tailstock
 1. Press the OFFSET function key.
 2. Press the continuous menu key. Then, press the [BARIER] chapter selection soft key.
 3. Pressing the page key toggles the display between the chuck barrier setting screen and tailstock barrier setting screen.

Chuck barrier setting screen

![Chuck barrier setting screen diagram]

- BARRIER (CHUCK)
 TY=0 \((0: \text{IN}, 1: \text{OUT}) \)
 L = 50.000
 W = 60.000
 L1 = 25.000
 W1 = 30.000
 CX = 200.000
 CZ = -100.000

ACTUAL POSITION (ABSOLUTE)
X 200.000
Z 50.000

MDI **** *** *** 14:46:09
[][W.SHFT][][BARIER] [(OPRT)]
4 Position the cursor to each item defining the shape of the chuck or tailstock, enter the corresponding value, then press the [INPUT] soft key. The value is set. Pressing the [+INPUT] soft key after a value has been entered adds the entered value to the current value, the new setting being the sum of the two values.

Items CX and CZ, both on the chuck barrier setting screen, and item TZ on the tailstock barrier setting screen can also be set in another way. Manually move the tool to the desired position, then press the [SET] soft key to set the coordinate(s) of the tool in the workpiece coordinate system. If a tool having an offset other than 0 is manually moved to the desired position with no compensation applied, compensate for the tool offset in the set coordinate system.

Items other than CX, CZ, and TZ cannot be set by using the [SET] soft key.

Example)
When the tool tip enters the entry–inhibition area during machining, the function stops the movement of the tool and displays an alarm message. Since the machine system can stop only a slight delay after the CNC stops, the tool will actually stop moving at a point within the specified boundary. For safety, therefore, set an area a little larger than the determined area. The distance between the boundaries of these two areas, L, is calculated from the following equation, based on the rapid traverse rate.

\[L = \left(\frac{\text{Rapid traverse Rate}}{7500} \right) \]

When the rapid traverse rate is 15 m/min, for example, set an area having a boundary 2 mm outside that of the determined area.

The shapes of the chuck and tailstock can be set using parameters No. 1330 to 1345.

CAUTION

Set G23 mode before attempting to specify the shapes of the chuck and tailstock.
• **Reference position return**

1. Return the tool to the reference position along the X- and Z-axes. The chuck–tailstock barrier function becomes effective only once reference position return has been completed after power on. When an absolute position detector is provided, reference position return need not always be performed. The positional relationship between the machine and the absolute position detector, however, must be determined.

• **G22, G23**

1. After reference position return, specifying G22 (stored stroke limit on) makes the entry–inhibition areas for the chuck and tailstock effective. Specifying G23 (stored stroke limit off) disables the function.

 Even if G22 is specified, the entry–inhibition area for the tailstock can be disabled by issuing a tailstock barrier signal.

 When the tailstock is pushed up against a workpiece or separated from the workpiece by using the miscellaneous functions, PMC signals are used to enable or disable the tailstock setting area.

<table>
<thead>
<tr>
<th>G code</th>
<th>Tailstock barrier signal</th>
<th>Chuck barrier</th>
<th>Tailstock barrier</th>
</tr>
</thead>
<tbody>
<tr>
<td>G22</td>
<td>0</td>
<td>Effective</td>
<td>Effective</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Effective</td>
<td>Ineffective</td>
</tr>
<tr>
<td>G23</td>
<td>No relation</td>
<td>Ineffective</td>
<td>Ineffective</td>
</tr>
</tbody>
</table>

G22 is usually selected when the power is turned on. Using G23, bit 7 of parameter No. 3402, however, it can be changed to G23.

Explanations

• **Setting the shape of the chuck barrier**

- Chuck holding the outer face of a tool

- Chuck holding the inner face of a tool

Note) The hatched areas indicate entry–inhibition areas.
Symbol Description

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TY</td>
<td>Chuck shape selection (0: Holding the inner face of a tool, 1: Holding the outer face of a tool)</td>
</tr>
<tr>
<td>CX</td>
<td>Chuck position (along X-axis)</td>
</tr>
<tr>
<td>CZ</td>
<td>Chuck position (along Z-axis)</td>
</tr>
<tr>
<td>L</td>
<td>Length of chuck jaws</td>
</tr>
<tr>
<td>W</td>
<td>Depth of chuck jaws (radius)</td>
</tr>
<tr>
<td>L1</td>
<td>Holding length of chuck jaws</td>
</tr>
<tr>
<td>W1</td>
<td>Holding depth of chuck jaws (radius)</td>
</tr>
</tbody>
</table>

TY: Selects a chuck type, based on its shape. Specifying 0 selects a chuck that holds the inner face of a tool. Specifying 1 selects a chuck that holds the outer face of a tool. A chuck is assumed to be symmetrical about its Z-axis.

CX, CZ: Specify the coordinates of a chuck position, point A, in the workpiece coordinate system. These coordinates are not the same as those in the machine coordinate system. Table 1 lists the units used to specify the data.

WARNING
Whether diameter programming or radius programming is used for the axis determines the programming system. When diameter programming is used for the axis, use diameter programming to enter data for the axis.

<table>
<thead>
<tr>
<th>Increment system</th>
<th>Data unit</th>
<th>Valid data range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metric input</td>
<td>IS-A 0.001 mm, IS-B 0.0001 mm</td>
<td>-99999999 to +99999999</td>
</tr>
<tr>
<td>Inch input</td>
<td>IS-A 0.0001 inch, IS-B 0.00001 inch</td>
<td>-99999999 to +99999999</td>
</tr>
</tbody>
</table>

L, L1, W, W1: Define the shape of a chuck. Table 2 lists the units used to specify the data.

WARNING
Always specify W and W1 in radius. When radius programming is used for the Z-axis, specify L and L1 in radius.

<table>
<thead>
<tr>
<th>Increment system</th>
<th>Data unit</th>
<th>Valid data range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metric input</td>
<td>IS-A 0.001 mm, IS-B 0.0001 mm</td>
<td>-99999999 to +99999999</td>
</tr>
<tr>
<td>Inch input</td>
<td>IS-A 0.0001 inch, IS-B 0.00001 inch</td>
<td>-99999999 to +99999999</td>
</tr>
</tbody>
</table>
Setting the shape of a tailstock barrier

![Diagram of workpiece coordinate system with symbols L, L1, L2, D, D1, D2, D3, TZ, and B.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TZ</td>
<td>Tailstock position (along the Z-axis)</td>
</tr>
<tr>
<td>L</td>
<td>Tailstock length</td>
</tr>
<tr>
<td>D</td>
<td>Tailstock diameter</td>
</tr>
<tr>
<td>L1</td>
<td>Tailstock length (1)</td>
</tr>
<tr>
<td>D1</td>
<td>Tailstock diameter (1)</td>
</tr>
<tr>
<td>L2</td>
<td>Tailstock length (2)</td>
</tr>
<tr>
<td>D2</td>
<td>Tailstock diameter (2)</td>
</tr>
<tr>
<td>D3</td>
<td>Tailstock diameter (3)</td>
</tr>
</tbody>
</table>

TZ: Specifies the Z coordinate of the chuck position, point B, in the workpiece coordinate system. These coordinates are not the same as those in the machine coordinate system. Table 3 lists the units used to specify the data. A tailstock is assumed to be symmetrical about its Z-axis.

WARNING

Whether diameter programming or radius programming is used for the Z-axis determines the programming system.

Table 3 Units

<table>
<thead>
<tr>
<th>Increment system</th>
<th>Data unit</th>
<th>Valid data range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IS–A</td>
<td>IS–B</td>
</tr>
<tr>
<td>Metric input</td>
<td>0.001 mm</td>
<td>0.0001 mm</td>
</tr>
<tr>
<td>Inch input</td>
<td>0.0001 inch</td>
<td>0.00001 inch</td>
</tr>
</tbody>
</table>

L, L1, L2, D, D1, D2, D3:
Define the shape of a tailstock. Table 4 lists the units used to specify the data.

WARNING
Always specify D, D1, D2, and D3 in diameter programming. When radius programming is used for the Z-axis, specify L, L1, and L2 in radius.
Table 4 Units

<table>
<thead>
<tr>
<th>Increment system</th>
<th>Data unit</th>
<th>Valid data range</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS−A</td>
<td>0.001 mm</td>
<td>0.0001 inch</td>
</tr>
<tr>
<td>IS−B</td>
<td>0.0001 mm</td>
<td>−99999999 to +99999999</td>
</tr>
</tbody>
</table>

- **Setting the entry−inhibition area for the tailstock tip**

The tip angle of the tailstock is 60 degrees. The entry−inhibition area is set around the tip, assuming the angle to be 90 degrees, as shown below.

Limitations

- **Correct setting of an entry−inhibition area**

If an entry−inhibition area is incorrectly set, it may not be possible to make the area effective. Avoid making the following settings:
 - L < L1 or W < W1 in the chuck−shape settings.
 - D2 < D3 in the tailstock−shape settings.
 - A chuck setting overlapping that of the tailstock.

- **Retraction from the entry−inhibition area**

If the tool enters the entry−inhibition area and an alarm is issued, switch to manual mode, retract the tool manually, then reset the system to release the alarm. In manual mode, the tool can be moved only in the opposite direction to that in which the tool entered the area. The tool cannot be moved in the same direction (further into the area) as it was travelling when the tool entered the area.

When the entry−inhibition areas for the chuck and tailstock are enabled, and the tool is already positioned within those areas, an alarm is issued when the tool moves. When the tool cannot be retracted, change the setting of the entry−inhibition areas, such that the tool is outside the areas, reset the system to release the alarm, then retract the tool. Finally, reinstall the original settings.
An entry–inhibition area is defined using the workpiece coordinate system. Note the following.

1. When the workpiece coordinate system is shifted by means of a command or operation, the entry–inhibition area is also shifted by the same amount.

Use of the following commands and operations will shift the workpiece coordinate system.

Commands:
- G54 to G59, G52, G50 (G92 in G code system B or C)

Operations:
- Manual handle interrupt, change in offset relative to the workpiece reference point, change in tool offset (tool geometry compensation), operation with machine lock, manual operation with machine absolute signal off

2. When the tool enters an entry–inhibition area during automatic operation, set the manual absolute signal, *ABSM, to 0 (on), then manually retract the tool from the area. If this signal is 1, the distance the tool moves in manual operation is not counted in the tool coordinates in the workpiece coordinate system. This results in the state where the tool can never be retracted from the entry–inhibition area.

When both stored stroke limit 2, 3 and the chuck–tailstock barrier function are provided, the barrier takes priority over the stroke limit. Stored stroke limit 2, 3 is ignored.

Alarms

<table>
<thead>
<tr>
<th>Number</th>
<th>Message</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>502</td>
<td>OVER TRAVEL: +X</td>
<td>The tool has entered the entry–inhibition area during positive–direction movement along the X–axis.</td>
</tr>
<tr>
<td></td>
<td>OVER TRAVEL: +Z</td>
<td>The tool has entered the entry–inhibition area during positive–direction movement along the Z–axis.</td>
</tr>
<tr>
<td>503</td>
<td>OVER TRAVEL: −X</td>
<td>The tool has entered the entry–inhibition area during negative–direction movement along the X–axis.</td>
</tr>
<tr>
<td></td>
<td>OVER TRAVEL: −Z</td>
<td>The tool has entered the entry–inhibition area during negative–direction movement along the Z–axis.</td>
</tr>
</tbody>
</table>
ALARM AND SELF–DIAGNOSIS FUNCTIONS

When an alarm occurs, the corresponding alarm screen appears to indicate the cause of the alarm. The causes of alarms are classified by alarm numbers. Up to 25 previous alarms can be stored and displayed on the screen (alarm history display). The system may sometimes seem to be at a halt, although no alarm is displayed. In this case, the system may be performing some processing. The state of the system can be checked using the self–diagnostic function.
7.1 ALARM DISPLAY

Explanations

- **Alarm screen**

When an alarm occurs, the alarm screen appears.

```
ALARM MESSAGE

100  PARAMETER WRITE ENABLE
510  OVER TRAVEL :+X
417  SERVO ALARM : X AXIS DGTL PARAM
417  SERVO ALARM : Z AXIS DGTL PARAM
```

- **Another method for alarm displays**

In some cases, the alarm screen does not appear, but an ALM is displayed at the bottom of the screen.

```
PARAMETER (AXIS/UNIT)

1001  INM
1002  NFD XIK DLZ JAX
1003
1004  IPR ISC

> MEM

( NO.SRH ){ ON:1 } ( OFF:0 ) ( INPUT ) ( INPUT )
```

In this case, display the alarm screen as follows:

1. Press the function key **MESSAGE**.
2. Press the chapter selection soft key [ALARM].
7. ALARM AND SELF–DIAGNOSIS FUNCTIONS

• Reset of the alarm

Alarm numbers and messages indicate the cause of an alarm. To recover from an alarm, eliminate the cause and press the reset key.

• Alarm numbers

The error codes are classified as follows:

No. 000 to 255 : P/S alarm (Program errors) (*)
No. 300 to 349 : Absolute pulse coder (APC) alarms
No. 350 to 399 : Serial pulse coder (SPC) alarms
No. 400 to 499 : Servo alarms (1/2)
No. 500 to 599 : Overtravel alarms
No. 600 to 699 : Servo alarms (2/2)
No. 700 to 739 : Overheat alarms
No. 740 to 748 : Rigid tapping alarms
No. 749 to 799 : Spindle alarms
No. 900 to 999 : System alarms
No. 5000 to : P/S alarm (Program errors)

* For an alarm (No. 000 to 255) that occurs in association with background operation, the indication “xxxBP/S alarm” is provided (where xxx is an alarm number). Only a BP/S alarm is provided for No. 140.

See the alarm list in the appendix G for details of the alarms.
7.2 ALARM HISTORY DISPLAY

Up to 25 of the most recent CNC alarms are stored and displayed on the screen.
Display the alarm history as follows:

Procedure for Alarm History Display

1. Press the function key [MESSAGE].

2. Press the chapter selection soft key [HISTORY].
The alarm history appears.
The following information items are displayed.
 (1) The date the alarm was issued
 (2) Alarm No.
 (3) Alarm message (some contain no message)
 (4) Page number

3. Change the page by page key [PAGE] or [PAGE].

4. To delete the recorded information, press the softkey [OPRT] then the [DELETE] key.
7.3 CHECKING BY SELF–DIAGNOSTIC SCREEN

The system may sometimes seem to be at a halt, although no alarm has occurred. In this case, the system may be performing some processing. The state of the system can be checked by displaying the self–diagnostic screen.

Procedure for Diagnostic

1. Press the function key [SYSTEM].
2. Press the chapter select key [DGNOS].
3. The diagnostic screen has more than 1 pages. Select the screen by the following operation.
 (1) Change the page by page key [PAGE] or [PAGE].
 (2) Method by soft key
 – Key input the number of the diagnostic data to be displayed.
 – Press [N SRCH].

```
DIAGNOSTIC (GENERAL) O0020 N00001

000 WAITING FOR FIN SIGNAL :0
001 MOTION :0
002 DWELL :0
003 IN–POSITION CHECK :0
004 FEEDRATE OVERRIDE 0% :0
005 INTERLOCK/START–LOCK :0
006 SPINDLE SPEED ARRIVAL CHECK :0

EDIT * * * * * 14 : 51 : 55
  ( PARAM ) [ DGNOS ] ( PMC ) [ SYSTEM ] ( OPRT )
```
7. ALARM AND SELF–DIAGNOSIS FUNCTIONS

OPERATION

Explanations

Diagnostic numbers 000 to 015 indicate states when a command is being specified but appears as if it were not being executed. The table below lists the internal states when 1 is displayed at the right end of each line on the screen.

Table 7.3 (a) Alarm displays when a command is specified but appears as if it were not being executed

<table>
<thead>
<tr>
<th>No.</th>
<th>Display</th>
<th>Internal status when 1 is displayed</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>WAITING FOR FIN SIGNAL</td>
<td>M, S, T function being executed</td>
</tr>
<tr>
<td>001</td>
<td>MOTION</td>
<td>Move command in automatic operation being executed</td>
</tr>
<tr>
<td>002</td>
<td>DWELL</td>
<td>Dwell being executed</td>
</tr>
<tr>
<td>003</td>
<td>IN–POSITION CHECK</td>
<td>In–position check being executed</td>
</tr>
<tr>
<td>004</td>
<td>FEEDRATE OVERRIDE 0%</td>
<td>Cutting feed override 0%</td>
</tr>
<tr>
<td>005</td>
<td>INTERLOCK/START–LOCK</td>
<td>Interlock ON</td>
</tr>
<tr>
<td>006</td>
<td>SPINDLE SPEED ARRIVAL CHECK</td>
<td>Waiting for spindle speed arrival signal to turn on</td>
</tr>
<tr>
<td>010</td>
<td>PUNCHING</td>
<td>Data being output via reader puncher interface</td>
</tr>
<tr>
<td>011</td>
<td>READING</td>
<td>Data being input via reader puncher interface</td>
</tr>
<tr>
<td>012</td>
<td>WAITING FOR (UN) CLAMP</td>
<td>Waiting for index table clamp/unclamp before B axis index table indexing start/after B axis index table indexing end to complete</td>
</tr>
<tr>
<td>013</td>
<td>JOG FEEDRATE OVERRIDE 0%</td>
<td>Jog override 0%</td>
</tr>
<tr>
<td>014</td>
<td>WAITING FOR RESET.ESP.RRW.OFF</td>
<td>Emergency stop, external reset, reset & rewind, or MDI panel reset key on</td>
</tr>
<tr>
<td>015</td>
<td>EXTERNAL PROGRAM NUMBER SEARCH</td>
<td>External program number searching</td>
</tr>
</tbody>
</table>

Diagnostic numbers 020 to 025 indicate the states when automatic operation is stopped or paused.

Table 7.3 (b) Alarm displays when an automatic operation is stopped or paused

<table>
<thead>
<tr>
<th>No.</th>
<th>Display</th>
<th>Internal status when 1 is displayed</th>
</tr>
</thead>
<tbody>
<tr>
<td>020</td>
<td>CUT SPEED UP/DOWN</td>
<td>Set when emergency stop turns on or when servo alarm occurs</td>
</tr>
<tr>
<td>021</td>
<td>RESET BUTTON ON</td>
<td>Set when reset key turns on</td>
</tr>
<tr>
<td>022</td>
<td>RESET ANDREWIND ON</td>
<td>Reset and rewind turned on</td>
</tr>
<tr>
<td>023</td>
<td>EMERGENCY STOP ON</td>
<td>Set when emergency stop turns on</td>
</tr>
<tr>
<td>024</td>
<td>RESET ON</td>
<td>Set when external reset, emergency stop, reset, or reset & rewind turns on</td>
</tr>
<tr>
<td>025</td>
<td>STOP MOTION OR DWELL</td>
<td>A flag which stops pulse distribution. It is set in the following cases. (1)External reset turned on. (2)Reset & rewind turned on. (3)Emergency stop turned on. (4)Feed hold turned on. (5)The MDI panel reset key turned on. (6)Switched to the manual mode(JOG/HANDLE/INC). (7)Other alarm occurred. (There is also alarm which is not set.)</td>
</tr>
</tbody>
</table>

--- 490 ---
The table below shows the signals and states which are enabled when each diagnostic data item is 1. Each combination of the values of the diagnostic data indicates a unique state.

<table>
<thead>
<tr>
<th>No.</th>
<th>Display</th>
<th>Meaning of data</th>
</tr>
</thead>
<tbody>
<tr>
<td>020</td>
<td>CUT SPEED UP/DOWN</td>
<td></td>
</tr>
<tr>
<td>021</td>
<td>RESET BUTTON ON</td>
<td></td>
</tr>
<tr>
<td>022</td>
<td>RESET AND REWIND ON</td>
<td></td>
</tr>
<tr>
<td>023</td>
<td>EMERGENCY STOP ON</td>
<td></td>
</tr>
<tr>
<td>024</td>
<td>RESET ON</td>
<td></td>
</tr>
<tr>
<td>025</td>
<td>STOP MOTION OR DWELL</td>
<td></td>
</tr>
</tbody>
</table>

Diagnostic numbers 030 and 031 indicate TH alarm states.

<table>
<thead>
<tr>
<th>No.</th>
<th>Display</th>
<th>Meaning of data</th>
</tr>
</thead>
<tbody>
<tr>
<td>030</td>
<td>CHARACTER NUMBER TH DATA</td>
<td>The position of the character which caused TH alarm is displayed by the number of characters from the beginning of the block at TH alarm</td>
</tr>
<tr>
<td>031</td>
<td>TH DATA</td>
<td>Read code of character which caused TH alarm</td>
</tr>
</tbody>
</table>
NC data is transferred between the NC and external input/output devices such as the Handy File. Information can be read into the CNC from a memory card and written from the CNC to the memory card, using the memory card interface at the left of the indicator.

The following types of data can be entered and output:

1. Program
2. Offset data
3. Parameter
4. Pitch error compensation data
5. Custom macro common variable

Before an input/output device can be used, the input/output related parameters must be set.

For how to set parameters, see III–2 “OPERATIONAL DEVICES”.
8.1 FILES

Of the external input/output devices, the FANUC Handy File use floppy disks as their input/output medium. In this manual, an input/output medium is generally referred to as a floppy. Unlike an NC tape, a floppy allows the user to freely choose from several types of data stored on one medium on a file-by-file basis. Input/output is possible with data extending over more than one floppy disk.

Explanations

- **What is a File**

 The unit of data, which is input/output between the floppy and the CNC by one input/output operation (pressing the VREADW or VPUNCHW key), is called a HfileI. When inputting CNC programs from, or outputting them to the floppy, for example, one or all programs within the CNC memory are handled as one file. Files are assigned automatically file numbers 1,2,3,4 and so on, with the lead file as 1.

 ![File Configuration](image)

- **Request for floppy replacement**

 When one file has been entered over two floppies, LEDs on the adaptor flash alternately on completion of data input/output between the first floppy and the CNC, prompting floppy replacement. In this case, take the first floppy out of the adaptor and insert a second floppy in its place. Then, data input/output will continue automatically. Floppy replacement is prompted when the second floppy and later is required during file search-out, data input/output between the CNC and the floppy, or file deletion.

 Floppy 1

 ![File Configuration](image)

 Floppy 2

 ![File Configuration](image)

 Since floppy replacement is processed by the input/output device, no special operation is required. The CNC will interrupt data input/output operation until the next floppy is inserted into the adaptor. When reset operation is applied to the CNC during a request for floppy replacement, the CNC is not reset at once, but reset after the floppy has been replaced.
The floppy is provided with the write protect switch. Set the switch to the write enable state. Then, start output operation.

![Write protect switch of a cassette](image)

(1) Write–protected (Only reading is possible.)

(2) Write–enabled (Reading, writing, and deletion are possible.)

Writing memo

Once written in the cassette or card, data can subsequently be read out by correspondence between the data contents and file numbers. This correspondence cannot be verified, unless the data contents and file numbers are output to the CNC and displayed. The data contents can be displayed with display function for directory of floppy disk (See Section III–8.8). To display the contents, write the file numbers and the contents on the memo column which is the back of floppy.

(Entry example on MEMO)

File 1 NC parameters
File 2 Offset data
File 3 NC program O0100

... ...

File (n–1) NC program O0500
File n NC program O0600
8.2 FILE SEARCH

When the program is input from the floppy, the file to be input first must be searched. For this purpose, proceed as follows:

1. Press the EDIT or MEMORY switch on the machine operator’s panel.
2. Press function key [PROG], then the program contents display screen or program check screen appears.
3. Press soft key [[OPRT]]
4. Press the rightmost soft key [next-menu key].
5. Enter address N.
6. Enter the number of the file to search for.
 - N0
 The beginning of the cassette or card is searched.
 - One of N1 to N9999
 Of the file Nos. 1 to 9999, a designated file is searched.
 - N–9999
 The file next to that accessed just before is searched.
 - N–9998
 When N–9998 is designated, N–9999 is automatically inserted each time a file is input or output. This condition is reset by the designation of N1,N1 to 9999, or N–9999 or reset.
7. Press soft keys [FSRH] and [EXEC]
 The specified file is searched for.

Explanations

• File search by N–9999

The same result is obtained both by sequentially searching the files by specifying Nos. N1 to N9999 and by first searching one of N1 to N9999 and then using the N–9999 searching method. The searching time is shorter in the latter case.
Alarm

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
</table>
| 86 | The ready signal (DR) of an input/output device is off.
An alarm is not immediately indicated in the CNC even when an alarm occurs during head searching (when a file is not found, or the like).
An alarm is given when the input/output operation is performed after that. This alarm is also raised when N1 is specified for writing data to an empty floppy. (In this case, specify N0.) |
Files stored on a floppy can be deleted file by file as required.

Procedure for File Deletion

1. Insert the floppy into the input/output device so that it is ready for writing.
2. Press the EDIT switch on the machine operator’s panel.
3. Press function key [PROG], then the program contents display screen appears.
4. Press soft key [(OPRT)]
5. Press the rightmost soft key (next-menu key).
6. Enter address N.
7. Enter the number (from 1 to 9999) of the file to delete.
8. Press soft key [DELETE], then press soft key [EXEC].

The file specified in step 7 is deleted.

Explanations

- **File number after the file is deleted**
 When a file is deleted, the file numbers after the deleted file are each decremented by one. Suppose that a file numbered k was deleted. In this case, files are renumbered as follows:

 Before deletion . . . after deletion
 1 to (k–1) 1 to (k–1)
 k Deleted
 (k+1) to n k to (n–1)

- **Protect switch**
 Set the write protect switch to the write enable state to delete the files.
8.4
PROGRAM INPUT/OUTPUT

8.4.1 Inputting a Program

This section describes how to load a program into the CNC from a floppy or NC tape.

Procedure for Inputting a Program

1. Make sure the input device is ready for reading.
 For the two-path control, select the tool post for which a program to be input is used with the tool post selection switch.

2. Press the EDIT switch on the machine operator’s panel.

3. When using a floppy, search for the required file according to the procedure in Section III-8.2.

4. Press function key [PROG], then the program contents display screen or program directory screen appears.

5. Press soft key [OPRT]

6. Press the rightmost soft key [Entr] (next-menu key).

7. After entering address O, specify a program number to be assigned to the program. When no program number is specified here, the program number used on the floppy or NC tape is assigned.

8. Press soft keys [READ] and [EXEC]
 The program is input and the program number specified in step 7 is assigned to the program.

Explanations

- Collation

If a program is input while the data protect key on the machine operator’s panel turns ON, the program loaded into the memory is verified against the contents of the floppy or NC tape.
If a mismatch is found during collation, the collation is terminated with an P/S alarm (No. 79).
If the operation above is performed with the data protection key turns OFF, collation is not performed, but programs are registered in memory.

- Inputting multiple programs from an NC tape

When a tape holds multiple programs, the tape is read up to ER (or %).

\[\text{O1111} \text{ M02; O2222} \text{ M30; O3333} \text{ M02; ER(%) }\]
• **Program numbers on a NC tape**
 - When a program is entered without specifying a program number.
 - The O-number of the program on the NC tape is assigned to the program. If the program has no O-number, the N-number in the first block is assigned to the program.
 - When the program has neither an O-number nor N-number, the previous program number is incremented by one and the result is assigned to the program.
 - When the program does not have an O-number but has a five-digit sequence number at the start of the program, the lower four digits of the sequence number are used as the program number. If the lower four digits are zeros, the previously registered program number is incremented by one and the result is assigned to the program.
 - When a program is entered with a program number. The O-number on the NC tape is ignored and the specified number is assigned to the program. When the program is followed by additional programs, the first additional program is given the program number. Additional program numbers are calculated by adding one to the last program.

• **Program registration in the background**
 The method of registration operation is the same as the method of foreground operation. However, this operation registers a program in the background editing area. As with edit operation, the operations described below are required at the end to register a program in foreground program memory.

 ([OPRT]) [BG–END]

• **Additional program input**
 You can input a program to be appended to the end of a registered program.

<table>
<thead>
<tr>
<th>Registered program</th>
<th>Input program</th>
<th>Program after input</th>
</tr>
</thead>
<tbody>
<tr>
<td>○1234 ;</td>
<td>○5678 ;</td>
<td>○1234 ;</td>
</tr>
<tr>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
</tbody>
</table>

In the above example, all lines of program O5678 are appended to the end of program O1234. In this case, program number O5678 is not registered. When inputting a program to be appended to a registered program, press the [READ] soft key without specifying a program number in step 8. Then, press the [CHAIN] and [EXEC] soft keys.

- In entire program input, all lines of a program are appended, except for its O number.
- When canceling additional input mode, press the reset key or the [CAN] or [STOP] soft key.
- Pressing the [CHAIN] soft key positions the cursor to the end of the registered program. Once a program has been input, the cursor is positioned to the start of the new program.
Additional input is possible only when a program has already been registered.

If an attempt has been made to register a program having the same number as that of a previously registered program, P/S alarm 073 is issued and the program cannot be registered.

Alarm

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>The size of memory is not sufficient to store the input programs</td>
</tr>
<tr>
<td>73</td>
<td>An attempt was made to store a program with an existing program number.</td>
</tr>
<tr>
<td>79</td>
<td>The verification operation found a mismatch between a program loaded into memory and the contents of the program on the floppy or NC tape.</td>
</tr>
</tbody>
</table>
8.4.2
Outputting a Program

A program stored in the memory of the CNC unit is output to a floppy or NC tape.

Procedure for Outputting a Program

1. Make sure the output device is ready for output. For the two-path control, select the tool post for which a program to be output is used with the tool post selection switch.

2. To output to an NC tape, specify the punch code system (ISO or EIA) using a parameter.

3. Press the EDIT switch on the machine operator’s panel.

4. Press function key [PROG], then the program contents display screen or program directory screen appears.

5. Press soft key [(OPRT)].

6. Press the rightmost soft key (next-menu key).

7. Enter address O.

8. Enter a program number. If 9999 is entered, all programs stored in memory are output. To output multiple programs at one time, enter a range as follows: OΔΔΔΔ.OΔΔΔΔ.OΔΔΔΔ/OΔΔΔΔ.OΔΔΔΔ.OΔΔΔΔ.OΔΔΔΔ

 Programs No.ΔΔΔΔ to No.ΔΔΔΔ are output.

 The program library screen displays program numbers in ascending order when bit 4 (SOR) of parameter No. 3107 is set to 1.

9. Press soft keys [PUNCH] and [EXEC]. The specified program or programs are output.

Explanations
(Output to a floppy)

- File output location

 When output is conducted to the floppy, the program is output as the new file after the files existing in the floppy. New files are to be written from the beginning with making the old files invalid, use the above output operation after the N0 head searching.

- An alarm while a program is output

 When P/S alarm (No.086) occurs during program output, the floppy is restored to the condition before the output.

- Outputting a program after file heading

 When program output is conducted after N1 to N9999 head searching, the new file is output as the designated n-th position. In this case, 1 to n-1 files are effective, but the files after the old n-th one are deleted. If an alarm occurs during output, only the 1 to n-1 files are restored.

- Efficient use of memory

 To efficiently use the memory in the cassette or card, output the program by setting parameter NFD (No. 0101#7, No. 0111#7 or 0121#7) to 1. This parameter makes the feed is not output, utilizing the memory efficiently.
• On the memo record

Head searching with a file No. is necessary when a file output from the CNC to the floppy is again input to the CNC memory or compared with the content of the CNC memory. Therefore, immediately after a file is output from the CNC to the floppy, record the file No. on the memo.

• Punching programs in the background

Punch operation can be performed in the same way as in the foreground. This function alone can punch out a program selected for foreground operation.

<\texttt{O}>(\text{Program No.}) [\texttt{PUNCH}] [\texttt{EXEC}]: Punches out a specified program.

<\texttt{O}> \texttt{H}–\texttt{99991} [\texttt{PUNCH}] [\texttt{EXEC}]: Punches out all programs.

Explanations
(Output to an NC tape)

• Format

A program is output to paper tape in the following format:

\[
\begin{array}{c}
\text{ER} \quad \text{(\%)} \\
\text{Program} \\
\text{ER} \quad \text{(\%)}
\end{array}
\]

Feed of 3 feet

If three–feet feeding is too long, press the \texttt{CAN} key during feed punching to cancel the subsequent feed punching.

• TV check

A space code for TV check is automatically punched.

• ISO code

When a program is punched in ISO code, two CR codes are punched after an LF code.

\[
\begin{array}{c}
\text{ER} \quad \text{(\%)} \\
\text{Program} \\
\text{ER} \quad \text{(\%)} \\
\text{LF} \quad \text{CR} \\
\text{CR}
\end{array}
\]

By setting NCR (bit 3 of parameter No. 0100), CRs can be omitted so that each LF appears without a CR.

• Stopping the punch

Press the \texttt{RESET} key to stop punch operation.

• Punching all programs

All programs are output to paper tape in the following format.

\[
\begin{array}{c}
\text{ER} \quad \text{(\%)} \\
\text{Program} \\
\text{Program} \\
\text{Program} \quad \text{ER} \quad \text{(\%)}
\end{array}
\]

Feed of 1–feet

Feed of 3–feet

The sequence of the programs punched is undefined.
8.5 OFFSET DATA INPUT AND OUTPUT

8.5.1 Inputting Offset Data

Offset data is loaded into the memory of the CNC from a floppy or NC tape. The input format is the same as for offset value output. See section III–8.5.2. When an offset value is loaded which has the same offset number as an offset number already registered in the memory, the loaded offset data replaces existing data.

Procedure for Inputting Offset Data

1. Make sure the input device is ready for reading
 For the two–path control, select the tool post for which offset data to be input is used with the tool post selection switch.
2. Press the EDIT switch on the machine operator’s panel.
3. When using a floppy, search for the required file according to the procedure in Section III–8.2.
4. Press function key \texttt{OFFSET SETTING} to display tool offset screen.
5. Press soft keys [\texttt{OPRT}], then the tool compensation screen appears.
6. Press rightmost soft key \texttt{(continuous menu key)}.
7. Press soft keys [\texttt{READ}] and [\texttt{EXEC}].
8. The input offset data will be displayed on the screen after completion of input operation.
All offset data is output in a output format from the memory of the CNC to a floppy or NC tape.

Procedure for Outputting Offset Data

1. Make sure the output device is ready for output. For the two-path control, select the tool post for which offset data to be output is used with the tool post selection switch.

2. Specify the punch code system (ISO or EIA) using a parameter.

3. Press the EDIT switch on the machine operator’s panel.

4. Press function key [OFFSET SETTING] to display tool offset screen.

5. Press soft key [(OPRT)].

6. Press the rightmost soft key (continuous menu key)

7. Press soft keys [PUNCH] and [EXEC]. Offset data is output in the output format described below.

Explanations

- **Output format**

 Output format is as follows:

 Format

 \[
 \text{G10P_X_Y_Z_R_Q;}
 \]

 \(P\): Offset number

 \(\ldots\): Work sheet : \(P=0\)

 \(\ldots\): For wear offset amount : \(P=\text{Wear offset number}\)

 \(\ldots\): For geometry offset amount : \(P=\text{10000+geometry offset number}\)

 \(X\): Offset value on \(X\) axis

 \(Y\): Offset value on \(Y\) axis

 \(Z\): Offset value on \(Z\) axis

 \(Q\): Imaginary tool nose number

 \(R\): Tool nose radius offset value

- **Output file name**

 When the floppy disk directory display function is used, the name of the output file is OFFSET.
Parameters and pitch error compensation data are input and output from different screens, respectively. This chapter describes how to enter them.

8.6 INPUTTING AND OUTPUTTING PARAMETERS AND PITCH ERROR COMPENSATION DATA

8.6.1 Inputting Parameters

Parameters are loaded into the memory of the CNC unit from a floppy or NC tape. The input format is the same as the output format. See Subsec. III–8.6.2. When a parameter is loaded which has the same data number as a parameter already registered in the memory, the loaded parameter replaces the existing parameter.

Procedure for Inputting Parameters

1. Make sure the input device is ready for reading.
2. When using a floppy, search for the required file according to the procedure in Section III–8.2.
3. Press the EMERGENCY STOP button on the machine operator’s panel.
4. Press function key \[\text{OFFSET SETTING}\].
5. Press the soft key \[\text{SETTING}\] for chapter selection, then the setting screen appears.
6. Enter 1 in response to the prompt for “PARAMETER WRITE (PWE)” in setting data. P/S alarm (No.100(indicating that parameters can be written)) appears.
7. Press soft key \[\text{SYSTEM}\].
8. Press chapter selection soft key \[\text{PARAM}\], then the parameter screen appears.
9. Press soft key \[\text{[OPRT]}\].
10. Press the rightmost soft key \[\text{[=]}\] (continuous menu key).
11. Press soft keys \[\text{READ}\] and \[\text{[EXEC]}\]. Parameters are read into memory. Upon completion of input, the “INPUT” indicator at the lower–right corner of the screen disappears.
12. Press function key \[\text{OFFSET SETTING}\].
13. Press soft key \[\text{SETTING}\] for chapter selection.
14. Enter 0 in response to the prompt for “PARAMETER WRITE (PWE)” in setting data.
15 Turn the power to the NC back on.
16 Release the EMERGENCY STOP button on the machine operator’s panel.

8.6.2 Outputting Parameters

All parameters are output in the defined format from the memory of the CNC to a floppy or NC tape.

Procedure for Outputting Parameters

1 Make sure the output device is ready for output.
 For the two–path control, select the tool post for which parameters to be input are used with the tool post selection switch.

2 Specify the punch code system (ISO or EIA) using a parameter.

3 Press the EDIT switch on the machine operator’s panel.

4 Press function key [SYSTEM].

5 Press chapter selection soft key [PARAM] to display the parameter screen.

6 Press soft key [(OPRT)].

7 Press rightmost soft key (continuous menu key).

8 Press soft key [PUNCH].

9 To output all parameters, press the [ALL] soft key. To output only parameters which are set to other than 0, press the [NON–0] soft key.

10 Press soft key [EXEC].
 All parameters are output in the defined format.

Explanations

• Output format

Output format is as follows:
N . . P . . ;
N . . P . . ;

N:Parameter No.
A:Axis No.(n is the number of control axis)
P:Parameter setting value

• Suppressing output of parameters set to 0

To suppress the output of the following parameters, press the [PUNCH] soft key then [NON–0] soft key.

<table>
<thead>
<tr>
<th></th>
<th>Other than axis type</th>
<th>Axis type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit type</td>
<td>Parameter for which all bits are set to 0</td>
<td>Parameter for an axis for which all bits are set to 0.</td>
</tr>
<tr>
<td>Value type</td>
<td>Parameter whose value is 0.</td>
<td>Parameter for an axis for which the value is 0.</td>
</tr>
</tbody>
</table>
Output file name

When the floppy disk directory display function is used, the name of the output file is PARAMETER.
Once all parameters have been output, the output file is named ALL PARAMETER. Once only parameters which are set to other than 0 have been output, the output file is named NON–0. PARAMETER.

8.6.3 Inputting Pitch Error Compensation Data

Pitch error compensation data are loaded into the memory of the CNC from a floppy or NC tape. The input format is the same as the output format. See Section 8.6.4. When a pitch error compensation data is loaded which has the corresponding data number as a pitch error compensation data already registered in the memory, the loaded data replaces the existing data.

Procedure for Pitch Error Compensation Data

1. Make sure the input device is ready for reading.
2. When using a floppy, search for the required file according to the procedure in Section III–8.2.
3. Press the EMERGENCY STOP button on the machine operator’s panel.
4. Press function key [OFFSET SETING].
5. Press the soft key [SETTING] for chapter selection.
6. Enter 1 in response to the prompt for “PARAMETER WRITE (PWE)” in setting data. P/S alarm (No. 100 (indicating that parameters can be written)) appears.
7. Press soft key [SYSTEM].
8. Press the rightmost soft key (continuous menu key) and press chapter selection soft key [PITCH].
9. Press soft key [(OPRT)].
10. Press the rightmost soft key (continuous menu key).
11. Press soft keys [READ] and [EXEC]. Pitch error compensation data are read into memory. Upon completion of input, the “INPUT” indicator at the lower–right corner of the screen disappears.
12. Press function key [OFFSET SETING].
14. Enter 0 in response to the prompt for “PARAMETER WRITE (PWE)” of setting data.
15. Turn the power to the NC back on.
16 Release the EMERGENCY STOP button on the machine operator’s panel.

Explanations

- **Pitch error compensation**
 Parameters 3620 to 3624 and pitch error compensation data must be set correctly to apply pitch error compensation correctly (See subsec. III–11.5.2)

8.6.4 Outputting Pitch Error Compensation Data

All pitch error compensation data are output in the defined format from the memory of the CNC to a floppy or NC tape.

Procedure for Outputting Pitch Error Compensation Data

1. Make sure the output device is ready for output. For the two–path control, select the tool post for which pitch error compensation data to be output is used with the tool post selection switch.
2. Specify the punch code system (ISO or EIA) using a parameter.
3. Press the EDIT switch on the machine operator’s panel.
4. Press function key [SYSTEM].
5. Press the rightmost soft key (continuous menu key) and press chapter selection soft key [PITCH].
6. Press soft key [(OPRT)].
7. Press rightmost soft key (continuous menu key).
8. Press soft keys [PUNCH] and [EXEC].

Explanations

- **Output format**
 Output format is as follows:
 N 10000 P ;
 N 11023 P ;
 N:Pitch error compensation point No. +10000
 P:Pitch error compensation data
 When bi–directional pitch error compensation is used, output format is as follows :
 N20000 P.... ;
 N21023 P.... ;
 N23000 P.... ;
 N24023 P.... ;
 N:Pitch error compensation point + 20000
 P:Pitch error compensation data

- **Output file name**
 When the floppy disk directory display function is used, the name of the output file is “PITCH ERROR”.

8.7
INPUTTING/OUTPUTTING CUSTOM MACRO COMMON VARIABLES

8.7.1
Inputting Custom Macro Common Variables

The value of a custom macro common variable (#500 to #999) is loaded into the memory of the CNC from a floppy or NC tape. The same format used to output custom macro common variables is used for input. See Subsec. 8.7.2. For a custom macro common variable to be valid, the input data must be executed by pressing the cycle start button after data is input. When the value of a common variable is loaded into memory, this value replaces the value of the same common variable already existing (if any) in memory.

Procedure for Inputting Custom Macro Common Variables

1. Register the program which has been output, as described in Section III–8.7.2, in memory according to the program input procedure described in Section III–8.4.1.
2. Press the MEMORY switch on the machine operator’s panel upon completing input.
3. Press the cycle start button to execute the loaded program.
4. Display the macro variable screen to check whether the values of the common variables have been set correctly.

Display of the macro variable screen

- Press function key [OFFSET SETTING].
- Press the rightmost soft key (continuous menu key).
- Press soft key [MACRO].
- Select a variable with the page keys or numeric keys and soft key [NO.SRH].

Explanations

- Common variables

The common variables (#500 to #531) can be input and output. When the option for adding a common variable is specified, values from #500 to #999 can be input and output. #100 to #199 can be input and output when bit 3 (PU5) of parameter No. 6001 is set to 1.
8.7.2 Outputing Custom Macro Common Variable

Custom macro common variables (#500 to #999) stored in the memory of the CNC can be output in the defined output format to a floppy or NC tape.

Procedure for Outputting Custom Macro Common Variable

1. Make sure the output device is ready for output.
2. Specify the punch code system (ISO or EIA) using a parameter.
3. Press the EDIT switch on the machine operator’s panel.
4. Press function key OFFSET SETTING.
5. Press the rightmost soft key (continuous menu key), then press soft key [MACRO].
6. Press soft key [(OPRT)].
7. Press the rightmost soft key (continuous menu key).
8. Press soft keys [PUNCH] and [EXEC].

Common variables are output in the defined format.

Explanations

- Output format

The output format is as follows:

<table>
<thead>
<tr>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>#500=[#25283*65536+65536]/134217728</td>
</tr>
<tr>
<td>#501=#0;</td>
</tr>
<tr>
<td>#502=0;</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>#531=</td>
</tr>
<tr>
<td>M02;</td>
</tr>
<tr>
<td>%</td>
</tr>
</tbody>
</table>

(1) The precision of a variable is maintained by outputting the value of the variable as <expression>.
(2) Undefined variable
(3) When the value of a variable is 0

- Output file name

When the floppy disk directory display function is used, the name of the output file is “MACRO VAR”.

- Common variable

The common variables (#500 to #531) can be input and output. When the option for adding a common variable is specified, values from #500 to #999 can be input and output. #100 to #199 can be input and output when bit 3 (PU5) of parameter No. 6001 is set to 1.
8.8 DISPLAYING DIRECTORIES OF FLOPPY DISK

On the floppy directory display screen, a directory of the FANUC Handy File, FANUC Floppy Cassette, or FANUC FA Card files can be displayed. In addition, those files can be loaded, output, and deleted.

<table>
<thead>
<tr>
<th>DIRECTORY (FLOPPY)</th>
<th>O0001 N00000</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO.</td>
<td>(METER) VOL</td>
</tr>
<tr>
<td>0001</td>
<td>PARAMETER</td>
</tr>
<tr>
<td>58.5</td>
<td></td>
</tr>
<tr>
<td>0002</td>
<td>O0001</td>
</tr>
<tr>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>0003</td>
<td>O0002</td>
</tr>
<tr>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>0004</td>
<td>O0010</td>
</tr>
<tr>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>0005</td>
<td>O0040</td>
</tr>
<tr>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>0006</td>
<td>O0050</td>
</tr>
<tr>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>0007</td>
<td>O1000</td>
</tr>
<tr>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>0008</td>
<td>O1000</td>
</tr>
<tr>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>0009</td>
<td>O9500</td>
</tr>
<tr>
<td>2.6</td>
<td></td>
</tr>
</tbody>
</table>

EDIT ***** *** *** 11:27:14

PRGRM (OPRT) (DIR)
8.8.1 Displaying the Directory

Displaying the Directory of Floppy Disk Files

Procedure 1

Use the following procedure to display a directory of all the files stored in a floppy:

1. Press the EDIT switch on the machine operator’s panel.

2. Press function key [PROG].

3. Press the rightmost soft key (continuous menu key).

4. Press soft key [FROPPY].

5. Press page key [PAGE] or [PAGE].

6. The screen below appears.

```
DIRECTORY (FLOPPY)  O0001 N00000
                 (METER) VOL
NO.  FILE NAME     58.5
0001  PARAMETER     1.9
0002  00001         1.9
0003  00002         1.9
0004  00010         1.3
0005  00040         1.3
0006  00050         1.9
0007  01000         1.9
0008  01000         1.9
0009  09500         2.6
```

```
EDIT  11 : 30 : 24
      F SRH READ PUNCH DELETE
     [   ] [   ] [   ] [   ]
```

7. Press a page key again to display another page of the directory.
Procedure 2

Use the following procedure to display a directory of files starting with a specified file number:

1. Press the EDIT switch on the machine operator’s panel.
2. Press function key [PROG].
3. Press the rightmost soft key (continuous menu key).
4. Press soft key [FLOPPY].
5. Press soft key [(OPRT)].
6. Press soft key [F SRH].
7. Enter a file number.
8. Press soft keys [F SET] and [EXEC].
9. Press a page key to display another page of the directory.
10. Press soft key [CAN] to return to the soft key display shown in the screen of Fig. 8.8.1(b).

DIRECTORY (FLOPPY) O0001 N00000
NO. FILE NAME (METER) VOL
0004 O0010 1.3
0005 O0040 1.3
0006 O0050 1.9
0007 O0100 1.9
0008 O1000 1.9
0009 O9500 2.6

SEARCH
FILE NO. =
EDT
F SET CAN EXEC

Fig. 8.8.1(b)
8. DATA INPUT/OUTPUT

OPERATION

B-63604EN/01

Explanations

- Screen fields and their meanings

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>Displays the file number</td>
</tr>
<tr>
<td>FILE NAME</td>
<td>Displays the file name.</td>
</tr>
<tr>
<td>(METER)</td>
<td>Converts and prints out the file capacity to paper tape length.</td>
</tr>
<tr>
<td></td>
<td>You can also produce (FEET)I by setting the INPUT UNIT to INCH.</td>
</tr>
<tr>
<td></td>
<td>of the setting data.</td>
</tr>
<tr>
<td>VOL.</td>
<td>When the file is multi-volume, that state is displayed.</td>
</tr>
</tbody>
</table>

(Ex.) Floppy or card A

Floppy or card B

Floppy or card C

C(number) means CONTINUE

L(number) means LAST

number number of floppies or cards
8.8.2 Reading Files

The contents of the specified file number are read to the memory of NC.

Procedure for Reading Files

1. Press the EDIT switch on the machine operator’s panel. For the two-path control, select the tool post for which a file is to be input in memory with the tool post selection switch.

2. Press function key PROG.

3. Press the rightmost soft key (continuous menu key).

4. Press soft key [FLOPPY].

5. Press soft key [(OPRT)].

6. Press soft key [READ].

<table>
<thead>
<tr>
<th>DIRECTORY (FLOPPY)</th>
<th>O0001</th>
<th>N00000 (METER) VOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO.</td>
<td>FILE NAME</td>
<td></td>
</tr>
<tr>
<td>0001</td>
<td>PARAMETER</td>
<td>58.5</td>
</tr>
<tr>
<td>0002</td>
<td>O0001</td>
<td>1.9</td>
</tr>
<tr>
<td>0003</td>
<td>O0002</td>
<td>1.9</td>
</tr>
<tr>
<td>0004</td>
<td>O0010</td>
<td>1.3</td>
</tr>
<tr>
<td>0005</td>
<td>O0040</td>
<td>1.3</td>
</tr>
<tr>
<td>0006</td>
<td>O0050</td>
<td>1.9</td>
</tr>
<tr>
<td>0007</td>
<td>O0100</td>
<td>1.9</td>
</tr>
<tr>
<td>0008</td>
<td>O1000</td>
<td>1.9</td>
</tr>
<tr>
<td>0009</td>
<td>O9500</td>
<td>2.6</td>
</tr>
</tbody>
</table>

READ
FILE NO. = PROGRAM NO. =
>_
EDIT **** **** **** 11:55:04

F SET O SET STOP CAN EXEC

7. Enter a file number.

8. Press soft key [F SET].

9. To modify the program number, enter the program number, then press soft key [O SET].

10. Press soft key [EXEC]. The file number indicated in the lower–left corner of the screen is automatically incremented by one.

11. Press soft key [CAN] to return to the soft key display shown in the screen of Fig. 8.8.1.(b).
8.8.3 Outputting Programs

Any program in the memory of the CNC unit can be output to a floppy as a file.

Procedure for Outputting Programs

1. Press the EDIT switch on the machine operator’s panel.
2. Press function key [PROG].
3. Press the rightmost soft key (continuous menu key).
4. Press soft key [FLOPPY].
5. Press soft key [(OPRT)].
6. Press soft key [PUNCH].

```
<table>
<thead>
<tr>
<th>DIRECTORY (FLOPPY)</th>
<th>O0002 N01000</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO. FILE NAME</td>
<td>(METER) VOL</td>
</tr>
<tr>
<td>0001 PARAMETER</td>
<td>58.5</td>
</tr>
<tr>
<td>0002 O0001</td>
<td>1.9</td>
</tr>
<tr>
<td>0003 O0002</td>
<td>1.9</td>
</tr>
<tr>
<td>0004 O0010</td>
<td>1.3</td>
</tr>
<tr>
<td>0005 O0040</td>
<td>1.3</td>
</tr>
<tr>
<td>0006 O0050</td>
<td>1.9</td>
</tr>
<tr>
<td>0007 O0100</td>
<td>1.9</td>
</tr>
<tr>
<td>0008 O1000</td>
<td>1.9</td>
</tr>
<tr>
<td>0009 O9500</td>
<td>2.6</td>
</tr>
</tbody>
</table>

PUNCH
FILE NO. = PROGRAM NO. =
> EDIT 11:55:26
  F SET O SET STOP CAN EXEC
```

7. Enter a program number. To write all programs into a single file, enter 9999 in the program number field. In this case, the file name “ALL.PROGRAM” is registered.
8. Press soft key [O SET].
9. Press soft key [EXEC]. The program or programs specified in step 7 are written after the last file on the floppy. To output the program after deleting files starting with an existing file number, key in the file number, then press soft key [F SET] followed by soft key [EXEC].
10. Press soft key [CAN] to return to the soft key display shown in the screen of Fig. 8.8.1(b).
8.8.4 Deleting Files

The file with the specified file number is deleted.

Procedure for Deleting Files

1. Press the EDIT switch on the machine operator’s panel.

2. Press function key PROG.

3. Press the rightmost soft key (continuous menu key).

4. Press soft key FLOPPY.

5. Press soft key [OPRT].

6. Press soft key [DELETE].

```
EDIT * *
* * * * * 11:55:51
DELETE FILE NO. = >秆
DIRECTORY (FLOPPY) NO. FILE NAME (METER) VOL
0001 PARAMETER 58.5
0002 O0001 1.9
0003 O0002 1.9
0004 O0010 1.3
0005 O0040 1.3
0006 O0050 1.9
0007 O0100 1.9
0008 O1000 1.9
0009 O9500 2.6

FILE NO. = NAME=
F SET  F NAME  CAN  EXEC
```

7. Specify the file to be deleted.
 When specifying the file with a file number, type the number and press soft key [F SET]. When specifying the file with a file name, type the name and press soft key [F NAME].

8. Press soft key EXEC.
 The file specified in the file number field is deleted. When a file is deleted, the file numbers after the deleted file are each decremented by one.

9. Press soft key CAN to return to the soft key display shown in the screen of Fig. 8.8.1(b).
Limitations

- **Inputting file numbers and program numbers with keys**
 If [F SET] or [O SET] is pressed without key inputting file number and program number, file number or program number shows blank. When 0 is entered for file numbers or program numbers, 1 is displayed.

- **I/O devices**
 To use channel 0, set a device number in parameter 102. Set the I/O device number to parameter No. 0112 when channel 1 is used. Set it to No. 0122 when channel 2 is used.

- **Significant digits**
 For the numeral input in the data input area with FILE NO. and PROGRAM NO., only lower 4 digits become valid.

- **Collation**
 When the data protection key on the machine operator’s panel is ON, no programs are read from the floppy. They are verified against the contents of the memory of the CNC instead.

ALARM

<table>
<thead>
<tr>
<th>No.</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>71</td>
<td>An invalid file number or program number was entered. (Specified program number is not found.)</td>
</tr>
<tr>
<td>79</td>
<td>Verification operation found a mismatch between a program loaded into memory and the contents of the floppy</td>
</tr>
<tr>
<td>86</td>
<td>The data set-ready signal (DR) for the input/output device is turned off. (The no file error or duplicate file error occurred on the input/output device because an invalid file number, program number, or file name was entered.</td>
</tr>
</tbody>
</table>
CNC programs stored in memory can be grouped according to their names, thus enabling the output of CNC programs in group units. Section III–11.3.3 explains the display of a program listing for a specified group.

Procedure for Outputting a Program List for a Specified Group

Procedure

1. Display the program list screen for a group of programs, as described in Section III–11.3.3.

 ![Program Directory Screen](image)

 - **PROGRAM DIRECTORY (GROUP)**
 - **O0001 N00010**
 - **PROGRAM (NUM.)** **MEMORY (CHAR.)**
 - **USED:** 60 **FREE:** 2
 - **O0020 (GEAR–1000 MAIN)**
 - **O0040 (GEAR–1000 SUB–1)**
 - **O0200 (GEAR–1000 SUB–2)**
 - **O2000 (GEAR–1000 SUB–3)**

 ![Program List Display](image)

 - **EDIT **** ···· **** ···· 16:52:13**
 - **PRGRM (DIR)((OPRT))**

2. Press the [[OPRT]] operation soft key.
3. Press the right–most soft key [→] (continuous menu key).
4. Press the [PUNCH] operation soft key.
5. Press the [AL–GRP] operation soft key.

The CNC programs in the group for which a search is made are output. When these programs are output to a floppy disk, they are output to a file named GROUP.PROGRAM.
To input/output a particular type of data, the corresponding screen is usually selected. For example, the parameter screen is used for parameter input from or output to an external input/output unit, while the program screen is used for program input or output. However, programs, parameters, offset data, and macro variables can all be input and output using a single common screen, that is, the ALL IO screen.

Fig. 8.10 ALL IO screen

(when channel 3 is being used for input/output)
8.10.1 Setting Input/Output–Related Parameters

Input/output–related parameters can be set on the ALL IO screen. Parameters can be set, regardless of the mode.

Procedure

1. Press function key \(\text{SYSTEM} \).
2. Press the rightmost soft key \(\text{➡️} \) (continuous menu key) several times.
3. Press soft key [ALL IO] to display the ALL IO screen.

NOTE

1. If program or floppy is selected in EDIT mode, the program directory or floppy screen is displayed.
2. When the power is first turned on, program is selected by default.

```
READ/PUNCH (PROGRAM) O1234 N12345

I/O CHANNEL  3  TV CHECK  OFF
DEVICE NUM.   0  PUNCH CODE  ISO
BAUDRATE      4800 INPUT CODE  ASCII
STOP BIT      2  FEED OUTPUT  FEED
NULL INPUT (EIA)  NO  EOB OUTPUT (ISO)  CR
TV CHECK (NOTES)  ON  BAUDRATE CLK. INNER
CD CHECK (232C)  OFF  RESET/ALARM  ON
PARITY BIT     OFF  SAT COMMAND  HOST
INTERFACE      RS422  COM PROTOCOL  A
END CODE       EXT  COM CODE  ASCII

(0:EIA  1:ISO)>1_
MDI   ⋯   ⋯   ⋯  ⋯  ⋯  ⋯  12:34:56

(PRGRM) (PARAM) (OFFSET) (MACRO) (OPRT)
```

NOTE

Baud rate clock, CD check (232C), reset/alarm report, and the parity bit for parameter No. 134, as well as the communication code, end code, communication protocol, interface, and SAT command for parameter No. 135 are displayed only when channel 3 is being used for input/output.

4. Select the soft key corresponding to the desired type of data (program, parameter, and so forth).
5. Set the parameters corresponding to the type of input/output unit to be used. (Parameter setting is possible regardless of the mode.)
A program can be input and output using the ALL IO screen. When entering a program using a cassette or card, the user must specify the input file containing the program (file search).

File search

Procedure

1. Press soft key [PRGRM] on the ALL IO screen, described in Section 8.10.1.
2. Select EDIT mode. A program directory is displayed.
3. Press soft key [OPRT]. The screen and soft keys change as shown below.
 - A program directory is displayed only in EDIT mode. In all other modes, the ALL IO screen is displayed.

```
O0001 N00010
* * * * * * * * * * *
EDIT                14:46:09
F SRH READ PUNCH (OPRT)
```

4. Enter address N.
5. Enter the number of the file to be found.
 - N0
 The first floppy file is found.
 - One of N1 to N9999
 Among the files numbered from 1 to 9999, a specified file is found.
 - N–9999
 The file immediately after that used most recently is found.
 - N–9998
 When N–9998 is specified, the next file is found. Then, each time a file input/output operation is performed, N–9999 is automatically inserted. This means that subsequent files can be sequentially found automatically.
 This state is canceled by specifying N0, N1 to N9999, or N–9999, or upon a reset.
6. Press soft keys [F SRH] and [EXEC].

The specified file is found.
Explanations

• Difference between N0 and N1
When a file already exists in a cassette or card, specifying N0 or N1 has the same effect. If N1 is specified when there is no file on the cassette or card, an alarm is issued because the first file cannot be found. Specifying N0 places the head at the start of the cassette or card, regardless of whether the cassette/card already contains files. So, no alarm is issued in this case. N0 can be used, for example, when a program is written into a new cassette or card, or when a previously used cassette or card is used once all the files it contains have been erased.

• Alarm issue during file search
If an alarm (file search failure, for example) is generated during file search, the CNC does not issue an alarm immediately. However, a P/S alarm (No. 086) is issued if input/output is subsequently performed on that file.

• File search using N–9999
Instead of sequentially searching for files by specifying actual file numbers every time, the user can specify the first file number, then find the subsequent files by specifying N–9999. When N–9999 is specified, the time required for file search can be reduced.

Inputting a program

Procedure

1. Press soft key [PRGRM] on the ALL IO screen, described in Section III–8.10.1.
2. Select EDIT mode. A program directory is displayed.
3. Press soft key [(OPRT)]. The screen and soft keys change as shown below.
 • A program directory is displayed only in EDIT mode. In all other modes, the ALL IO screen is displayed.

 ![Program Directory](image)

4. To specify a program number to be assigned to an input program, enter address O, followed by the desired program number. If no program number is specified, the program number in the file or on the NC tape is assigned as is.
5 Press soft key [READ], then [EXEC].
The program is input with the program number specified in step 4 assigned.
To cancel input, press soft key [CAN].
To stop input prior to its completion, press soft key [STOP].

Outputting a program

Procedure

1. Press soft key [PRGRM] on the ALL IO screen, described in Section III–8.10.1.

2. Select EDIT mode. A program directory is displayed.

3. Press soft key [(OPRT)]. The screen and soft keys change as shown below.
 - A program directory is displayed only in EDIT mode. In all other modes, the ALL IO screen is displayed.

 ![Program Directory]

 - 00001 N00010
 - PROGRAM (NUM.) MEMORY (CHAR.)
 - USED : 60 3321
 - FREE : 2 429
 - O0010 O0001 O0003 O0002 O0555 O0999
 - O0062 O0004 O0005 O1111 O0969 O6666
 - O0021 O1234 O0588 O0020 O0040

 >.
 - EDIT **** 14:46:09
 - [F SRH] [READ] [PUNCH] [DELETE] [OPRT]

4. Enter address O.

5. Enter a desired program number.
 - If –9999 is entered, all programs in memory are output.
 - To output a range of programs, enter O△△△△△, O□□□□□. The programs numbered from △△△△△ to □□□□□ are output.
 - When bit 4 (SOR) of parameter No. 3107 for sorted display is set to 1 on the program library screen, programs are output in order, starting from those having the smallest program numbers.

6. Press soft key [PUNCH], then [EXEC].
The specified program or programs are output. If steps 4 and 5 are omitted, the currently selected program is output.
To cancel output, press soft key [CAN].
To stop output prior to its completion, press soft key [STOP].
Deleting files

Procedure

1. Press soft key [PRGRM] on the ALL IO screen, described in Section III–8.10.1.

2. Select EDIT mode. A program directory is displayed.

3. Press soft key [(OPRT)]. The screen and soft keys change as shown below.
 - A program directory is displayed only in EDIT mode. In all other modes, the ALL IO screen is displayed.

4. Press soft key [DELETE].

5. Enter a file number, from 1 to 9999, to indicate the file to be deleted.

6. Press soft key [EXEC].
 - The k-th file, specified in step 5, is deleted.

Explanations

- **File numbers after deletion**
 - After deletion of the k-th file, the previous file numbers (k+1) to n are decremented by 1 to k to (n–1).

Before deletion	After deletion
 1 to (k–1) | 1 to (k–1)
 k | Deleted
 (k+1) to n | k to (n–1)

- **Write protect**
 - Before a file can be deleted, the write protect switch of the cassette must be set to make the cassette writable.
Parameters can be input and output using the ALL IO screen.

Inputting and Outputting Parameters

Inputting parameters

Procedure

1. Press soft key [PARAM] on the ALL IO screen, described in Section III–8.10.1.

2. Select EDIT mode.

3. Press soft key [(OPRT)]. The screen and soft keys change as shown below.

<table>
<thead>
<tr>
<th>READ/PUNCH (PARAMETER)</th>
<th>O1234 N12345</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O CHANNEL</td>
<td>3</td>
</tr>
<tr>
<td>DEVICE NUM.</td>
<td>0</td>
</tr>
<tr>
<td>BAUDRATE</td>
<td>4800</td>
</tr>
<tr>
<td>STOP BIT</td>
<td>2</td>
</tr>
<tr>
<td>NULL INPUT (EIA)</td>
<td>NO</td>
</tr>
<tr>
<td>TV CHECK (NOTES)</td>
<td>ON</td>
</tr>
<tr>
<td>CD CHECK (232C)</td>
<td>OFF</td>
</tr>
<tr>
<td>PARITY BIT</td>
<td>OFF</td>
</tr>
<tr>
<td>END CODE</td>
<td>EXT</td>
</tr>
<tr>
<td>INTERFACE</td>
<td>RS422</td>
</tr>
<tr>
<td>MDI</td>
<td>****</td>
</tr>
<tr>
<td>(0:EIA 1:ISO)>1_</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12:34:56</td>
</tr>
</tbody>
</table>

4. Press soft key [READ], then [EXEC].

The parameters are read, and the “INPUT” indicator blinks at the lower–right corner of the screen. Upon the completion of input, the “INPUT” indicator is cleared from the screen. To cancel input, press soft key [CAN].
Outputting parameters

Procedure

1. Press soft key [PARAM] on the ALL IO screen, described in Section III–8.10.1.
2. Select EDIT mode.
3. Press soft key [(OPRT)]. The screen and soft keys change as shown below.

```
READ/PUNCH (PARAMETER)  O1234 N12345
I/O CHANNEL              3  TV CHECK       OFF
DEVICE NUM.             0  PUNCH CODE      ISO
BAUDRATE               4800 INPUT CODE    ASCII
STOP BIT                2  FEED OUTPUT    FEED
NULL INPUT (EIA)        NO  EOB OUTPUT (ISO) CR
TV CHECK (NOTES)        ON  BAUDRATE CLK. INNER
CD CHECK (232C)         OFF RESET/ALARM  ON
PARITY BIT              OFF  COM CODE      ASCII
END CODE                EXT  COM PROTOCOL A
INTERFACE               RS422 SAT COMMAND HOST
(0: EIA 1: ISO)>1 _
MDI    ****  ***  ***  ***  12:34:56
```

4. Press soft key [PUNCH], then [EXEC].
The parameters are output, and the “OUTPUT” indicator blinks at the lower–right corner of the screen. Upon the completion of output, the “OUTPUT” indicator is cleared from the screen.
To cancel output, press soft key [CAN].
8.10.4 Inputting and Outputting Offset Data

Offset data can be input and output using the ALL IO screen.

Inputting offset data

Procedure

1. Press soft key [OFFSET] on the ALL IO screen, described in Section III–8.10.1.

2. Select EDIT mode.

3. Press soft key [(OPRT)]. The screen and soft keys change as shown below.

 READ/PUNCH (OFFSET) O1234 N12345
 I/O CHANNEL 3 TV CHECK OFF
 DEVICE NUM. 0 PUNCH CODE ASCII
 BAUDRATE 4800 INPUT CODE ASCII
 STOP BIT 2 FEED OUTPUT FEED
 NULL INPUT (EIA) NO EOB OUTPUT (ISO) CR
 TV CHECK (NOTES) ON BAUDRATE CLK. INNER
 CD CHECK (232C) OFF RESET/ALARM ON
 PARITY BIT OFF COM CODE ASCII
 END CODE EXT COM PROTOCOL A
 INTERFACE RS422 SAT COMMAND HOST
 (0:EIA 1:ISO)>1_
 MDI ***** *** *** *** 12:34:56

 () () () () (CAN) (EXEC)

4. Press soft key [READ], then [EXEC].

 The offset data is read, and the “INPUT” indicator blinks at the lower–right corner of the screen.
 Upon the completion of input, the “INPUT” indicator is cleared from the screen.
 To cancel input, press soft key [CAN].
Outputting offset data

Procedure

1. Press soft key [OFFSET] on the ALL IO screen, described in Section III–8.10.1.

2. Select EDIT mode.

3. Press soft key [(OPRT)]. The screen and soft keys change as shown below.

```
READ/PUNCH (OFFSET) O1234 N12345

I/O CHANNEL       3  TV CHECK    OFF
DEVICE NUM.       0  PUNCH CODE  ISO
BAUDRATE         4800  INPUT CODE  ASCII
STOP BIT          2  FEED OUTPUT FEED
NULL INPUT (EIA)  NO  EOB OUTPUT (ISO)  CR
TV CHECK (NOTES)  ON  BAUDRATE CLK. INNER
CD CHECK (232C)   OFF  RESET/ALARM  ON
PARITY BIT        OFF  COM CODE  ASCII
END CODE          EXT  COM PROTOCOL  A
INTERFACE       RS422  SAT COMMAND  HOST
(0:EIA 1:ISO)>1_  
MDI      **** ... ... ...  12:34:56

( ( ) ( ( ) ( ) ( ) ) )
```

4. Press soft key [PUNCH], then [EXEC].

The offset data is output, and the “OUTPUT” indicator blinks at the lower–right corner of the screen. Upon the completion of output, the “OUTPUT” indicator is cleared from the screen.

To cancel output, press soft key [CAN].
Outputting Custom Macro Common Variables

Custom macro common variables can be output using the ALL IO screen.

Procedure

1. Press soft key [MACRO] on the ALL IO screen, described in Section III–8.10.1.

2. Select EDIT mode.

3. Press soft key [(OPRT)]. The screen and soft keys change as shown below.

4. Press soft key [PUNCH], then [EXEC].

The custom macro common variables are output, and the “OUTPUT” indicator blinks at the lower–right corner of the screen. Upon the completion of output, the “OUTPUT” indicator is cleared from the screen.

To cancel output, press soft key [CAN].

NOTE

To input a macro variable, read the desired custom macro statement as a program, then execute the program.
8.10.6 Inputting and Outputting Floppy Files

The ALL IO screen supports the display of a directory of floppy files, as well as the input and output of floppy files.

Displaying a file directory

Procedure

1. Press the rightmost soft key (continuous menu key) on the ALL IO screen, described in Section III–8.10.1.
2. Press soft key [FLOPPY].
3. Select EDIT mode. The floppy screen is displayed.
4. Press soft key [(OPRT)]. The screen and soft keys change as shown below.
 The floppy screen is displayed only in EDIT mode. In all other modes, the ALL IO screen is displayed.

 READ/PUNCH (FLOPPY) O1234 N12345

 [...]

 MDI 12:34:56

 [F SRH][READ][PUNCH][DELETE]

5. Press soft key [F SRH].
6. Enter the number of the desired file, then press soft key [F SET].
7 Press soft key [EXEC]. A directory is displayed, with the specified file uppermost. Subsequent files in the directory can be displayed by pressing the page key.

<table>
<thead>
<tr>
<th>No.</th>
<th>FILE NAME</th>
<th>(Meter) VOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td>PARAMETER</td>
<td>46.1</td>
</tr>
<tr>
<td>0002</td>
<td>ALL PROGRAM</td>
<td>12.3</td>
</tr>
<tr>
<td>0003</td>
<td>O0001</td>
<td>1.9</td>
</tr>
<tr>
<td>0004</td>
<td>O0002</td>
<td>1.9</td>
</tr>
<tr>
<td>0005</td>
<td>O0003</td>
<td>1.9</td>
</tr>
<tr>
<td>0006</td>
<td>O0004</td>
<td>1.9</td>
</tr>
<tr>
<td>0007</td>
<td>O0005</td>
<td>1.9</td>
</tr>
<tr>
<td>0008</td>
<td>O0010</td>
<td>1.9</td>
</tr>
<tr>
<td>0009</td>
<td>O0020</td>
<td>1.9</td>
</tr>
</tbody>
</table>

F SRH
File No.=2
>2_

EDIT **** *** *** ***

A directory in which the first file is uppermost can be displayed simply by pressing the page key. (Soft key [F SRH] need not be pressed.)
Inputting a file

Procedure

1. Press the rightmost soft key [continuity menu key] on the ALL IO screen, described in Section III–8.10.1.

2. Press soft key [FLOPPY].

3. Select EDIT mode. The floppy screen is displayed.

4. Press soft key [OPRT] . The screen and soft keys change as shown below.
 The floppy screen is displayed only in EDIT mode. In all other modes, the ALL IO screen is displayed.

 ![Floppy Screen Diagram]

 INSTALLATION MODE

 READ/PUNCH (FLOPPY) O1234 N12345

 MDI 12:34:56
 F SRH READ PUNCH DELETE

5. Press soft key [READ].

6. Enter the number of a file or program to be input.
 - Setting a file number: Enter the number of the desired file, then press soft key [F SET].
 - Setting a program number: Enter the number of the desired program, then press soft key [O SET].

7. Press soft key [EXEC].
 The specified file or program is read, and the “INPUT” indicator blinks at the lower–right corner of the screen. Upon the completion of input, the “INPUT” indicator is cleared from the screen.
Outputting a file

Procedure

1. Press the rightmost soft key (continuous menu key) on the ALL IO screen, described in Section III–8.10.1.

2. Press soft key [FLOPPY].

3. Select EDIT mode. The floppy screen is displayed.

4. Press soft key [OPRT]. The screen and soft keys change as shown below. The floppy screen is displayed only in EDIT mode. In all other modes, the ALL IO screen is displayed.

 ![Floppy Screen](image)

5. Press soft key [PUNCH].

6. Enter the number of the program to be output, together with a desired output file number.
 - Setting a file number: Enter the number of the desired file, then press soft key [F SET].
 - Setting a program number: Enter the number of the desired program, then press soft key [O SET].

7. Press soft key [EXEC].
 The specified program is output, and the “OUTPUT” indicator blinks at the lower–right corner of the screen. Upon the completion of output, the “OUTPUT” indicator is cleared from the screen. If no file number is specified, the program is written at the end of the currently registered files.
Deleting a file

Procedure

1. Press the rightmost soft key (continuous menu key) on the ALL IO screen, described in Section III–8.10.1.

2. Press soft key [FLOPPY].

3. Select EDIT mode. The floppy screen is displayed.

4. Press soft key [(OPRT)]. The screen and soft keys change as shown below. The floppy screen is displayed only in EDIT mode. In all other modes, the ALL IO screen is displayed.

```
   READ/PUNCH (FLOPPY)  O1234 N12345
   > MDI  ****  ****  ****  ****  12:34:56
   ( F SRH ) ( READ ) ( PUNCH ) ( DELETE )
```

5. Press soft key [DELETE].

6. Enter the number of the desired file, then press soft key [F SET].

7. Press soft key [EXEC]. The specified file is deleted. After the file has been deleted, the subsequent files are shifted up.
8. DATA INPUT/OUTPUT

8.10.7 Memory Card Input/Output

Data held in CNC memory can be saved to a memory card in MS–DOS format. Data held on a memory card can be loaded into CNC memory. A save or load operation can be performed using soft keys while the CNC is operating.

Loading can be performed in either of two ways. In the first method, all saved memory data is loaded. In the second method, only selected data is loaded.

- The CNC memory size (*1) is displayed at all times.
- When no memory card is inserted, the message field (*4) displays a message prompting the user to insert a memory card, but does not display the memory card states (*2 and *3).
- If an inserted memory card is invalid (if there is no attribute memory, or if the attribute memory does not contain any device information), the message field (*4) displays an error message, but does not display the memory card states (*2 and *3).
Saving memory data

Data held in CNC memory can be saved to a memory card in MS-DOS format.

Procedure

1. Press the rightmost soft key (continuous menu key) on the ALL IO screen, described in Section III–8.10.1.

2. Press soft key [M–CARD].

3. Place the CNC in the emergency stop state.

4. When a memory card is inserted, the state of the memory card is displayed as shown below.

```
READ/PUNCH(M–CARD) O1234 N12345

CNC RAM  512K byte
Memory card  2,000M byte S-RAM
File       (    1/  1)
SRAM0_5A.FDB  524288 byte 97/01/23
Message

Select : All data
EDIT **** - - EMG-- 12:15:00
[FORMAT] [SAVE] [LOAD] [DELETE]

```

5. Press soft key [SAVE].

6. A message prompting the user to confirm the operation is displayed. Press soft key [EXEC] to execute the save operation.

7. As the data is being saved to the card, the message “RUNNING” blinks, and the number of bytes saved is displayed in the message field.

8. Once all data has been saved to the card, the message “COMPLETED” is displayed in the message field, with the message “PRESS RESET KEY.” displayed on the second line.

9. Press the RESET key. The displayed messages are cleared from the screen, and the display of the memory card state is replaced with that of the saved file.

NOTE

All CNC memory data is saved to a memory card. CNC memory data cannot be saved selectively.
The file name used for save operation is determined by the amount of SRAM mounted in the CNC. A file holding saved data is divided into blocks of 512KB.

SRAM file

<table>
<thead>
<tr>
<th>Amount of SRAM</th>
<th>256 KB</th>
<th>512 KB</th>
<th>1.0 MB</th>
<th>2.0 MB</th>
<th>3.0 MB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of files</td>
<td>1</td>
<td>SRAM0_5A. FDB</td>
<td>SRAM1_0A. FDB</td>
<td>SRAM2_0A. FDB</td>
<td>SRAM3_0A. FDB</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>SRAM0_5B. FDB</td>
<td>SRAM1_0B. FDB</td>
<td>SRAM2_0B. FDB</td>
<td>SRAM3_0B. FDB</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>SRAM1_0A. FDB</td>
<td>SRAM2_0A. FDB</td>
<td>SRAM3_0A. FDB</td>
<td>SRAM3_0A. FDB</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>SRAM1_0B. FDB</td>
<td>SRAM2_0B. FDB</td>
<td>SRAM3_0B. FDB</td>
<td>SRAM3_0B. FDB</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>SRAM1_0C. FDB</td>
<td>SRAM2_0C. FDB</td>
<td>SRAM3_0C. FDB</td>
<td>SRAM3_0C. FDB</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>SRAM1_0D. FDB</td>
<td>SRAM2_0D. FDB</td>
<td>SRAM3_0D. FDB</td>
<td>SRAM3_0D. FDB</td>
</tr>
</tbody>
</table>

- **Canceling saving**

 To cancel file save prior to its completion, press the [RESET] key on the MDI panel.

- **Memory card replacement request**

 When the memory card has less than 512K bytes of free space, a memory card replacement request is displayed. Insert a new memory card.

- **Loading data into memory (restoration)**

 CNC memory data that has been saved to a memory card can be loaded (restored) back into CNC memory. CNC memory data can be loaded in either of two ways. In the first method, all saved memory data is loaded. In the second method, only selected data is loaded.

Loading memory data

Procedure

1. Press the rightmost soft key (continuous menu key) on the ALL IO screen, described in Section III–8.10.1.

2. Press soft key [M–CARD].

3. Place the CNC in the emergency stop state.

4. When a memory card is inserted, the state of the memory card is displayed as shown below.

 ![Memory Card State]

5. Press soft key [LOAD].

6. With cursor keys ‹ and ›, select the file to be loaded from the memory card.
 A system having 1.0MB or 2.5MB of CNC RAM may require the loading of multiple files. All or selective data load can be specified for each file.

7. To perform selective data loading, press soft key [SELECT], then select the data to be loaded. Each time the soft key is pressed, the information displayed changes cyclically, as shown below.

 ![Selective Loading]

8. After checking the file selection, press soft key [EXEC].

9. During loading, the message “RUNNING” blinks, and the number of bytes loaded is displayed in the message field.

10. Upon the completion of loading, the message “COMPLETED” is displayed in the message field, with the message “PRESS RESET KEY.” displayed on the second line.

11. Press the RESET key. The messages are cleared from the screen.
Explanations

• **Canceling loading**

 To cancel file load prior to its completion, press the [RESET] key on the MDI panel.

• **Turning off the power after loading**

 Depending on the type of data, the system power may have to be turned off, then back on, for the load to become effective. When necessary, the message “TURN OFF POWER.” is displayed in the message field.

• **Parameter/PMC data**

 Before performing parameter/PMC data load, enable parameter write.

• **Program/offset data**

 Before performing program/offset data load, set the data protection key, on the machine operator’s panel, to the ON position.

• **Loading files from multiple memory cards**

 When multiple files are to be loaded from multiple memory cards, a message requesting memory card replacement is displayed.

NOTE

- If the saved data and CNC system onto which the saved data is to be loaded do not satisfy the conditions described below, an error message is displayed in the message field, and loading is disabled. Note, however, that in selective loading, even if the CNC system structure differs from that of a saved file, the file is never less loaded.
- The size of a saved file does not match the size of CNC RAM.
- The saved file has a different extension.
Memory card formatting

Before a file can be saved to a memory card, the memory card must be formatted.

Formatting a memory card

Procedure

1. Press the rightmost soft key [►] (continuous menu key) on the ALL IO screen, described in Section III–8.10.1.
2. Press soft key [M–CARD].
3. Place the CNC in the emergency stop state.
4. When a memory card is inserted, the state of the memory card is displayed as shown below.

 ![Memory card state](image)

 - CNC RAM: 512K byte
 - Memory card: 2.000M byte
 - File: SRAM0_5A.FDB
 - File size: 524288 byte
 - File date: 97/01/23

 Select: All data

 EDIT: **** - - EMG--
 [FORMAT] [SAVE] [LOAD] [DELETE] []

 READ/PUNCH(M–CARD) O1234 N12345

5. Press soft key [FORMAT].
6. A message prompting the user to confirm the operation is displayed. Press soft key [EXEC] to execute the formatting operation.
7. As formatting is being performed, the message “FORMATTING” blinks.
8. Upon the completion of formatting, the message “COMPLETED” is displayed in the message field.
Deleting files

Unnecessary saved files can be deleted from a memory card.

Procedure

1. Press the rightmost soft key (continuous menu key) on the ALL IO screen, described in Section III–8.10.1.

2. Press soft key [M–CARD].

3. Place the CNC in the emergency stop state.

4. When a memory card is inserted, the state of the memory card is displayed as shown below.

```
S     0  T0000
EDIT  ****  - - EMG- -         12: 15: 00
[FORMAT] [ SAVE ] [ LOAD ] [DELETE]
READ/PUNCH(M–CARD) O1234 N12345
[FORMAT] [ SAVE ] [ LOAD ] [DELETE]
CNC RAM 512K byte Memory card 2.000M byte S-RAM
File SRAM0_5A. FDB 524288 byte 97/01/23
Message
Select: All data
S    0 T0000
EDIT  ****  - - EMG- -         12: 15: 00
[FORMAT] [ SAVE ] [ LOAD ] [DELETE] [ ]
```

5. Press soft key [DELETE].

6. With cursor keys ▲ and ▼, select the file to be deleted from the memory card.

7. After checking the file selection, press soft key [EXEC].

8. As detection is being performed, the message “DELETING” blinks in the message field.

9. Upon the completion of deletion, the message “COMPLETED” is displayed in the message field.

NOTE

An SRAM of 1M bytes or more will contain multiple files. To delete the contents of such an SRAM, delete all the contained files.
Message and restrictions

Messages

<table>
<thead>
<tr>
<th>Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSERT MEMORY CARD.</td>
<td>No memory card is inserted.</td>
</tr>
<tr>
<td>UNUSABLE MEMORY CARD</td>
<td>The memory card does not contain device information.</td>
</tr>
<tr>
<td>FORMAT MEMORY CARD.</td>
<td>The memory card is not formatted. Format the memory card before use.</td>
</tr>
<tr>
<td>THE FILE IS UNUSABLE.</td>
<td>The format or extension of the file to be loaded is invalid. Alternatively, the data stored on the memory card does not match the CNC memory size.</td>
</tr>
<tr>
<td>REPLACE MEMORY CARD.</td>
<td>Replace the memory card.</td>
</tr>
<tr>
<td>FILE SYSTEM ERROR □□□□</td>
<td>An error occurred during file system processing. □□□□ represents a file system error code.</td>
</tr>
<tr>
<td>SET EMERGENCY STOP STATE.</td>
<td>Save/load operation is enabled in the emergency stop state only.</td>
</tr>
<tr>
<td>WRITE–PROTECTED</td>
<td>Save operation: The protect switch of the memory card is set to the disabled position. Load operation: Parameter write is disabled.</td>
</tr>
<tr>
<td>VOLTAGE DECREASED.</td>
<td>The battery voltage of the memory card has dropped. (The battery requires replacement.)</td>
</tr>
<tr>
<td>DEVICE IS BUSY.</td>
<td>Another user is using the memory card. Alternatively, the device cannot be accessed because automatic operation is in progress.</td>
</tr>
<tr>
<td>SRAM → MEMORY CARD?</td>
<td>This message prompts the user to confirm the start of data saving.</td>
</tr>
<tr>
<td>MEMORY CARD → SRAM?</td>
<td>This message prompts the user to confirm the start of data loading.</td>
</tr>
<tr>
<td>DO YOU WANT TO DELETE FILE(S)?</td>
<td>This message prompts the user to confirm the start of deletion.</td>
</tr>
<tr>
<td>DO YOU WANT TO PERFORM FORMATTING?</td>
<td>This message prompts the user to confirm the start of formatting.</td>
</tr>
<tr>
<td>SAVING</td>
<td>Saving is currently being performed.</td>
</tr>
<tr>
<td>LOADING</td>
<td>Loading is currently being performed.</td>
</tr>
<tr>
<td>DELETING</td>
<td>File deletion is currently being performed.</td>
</tr>
<tr>
<td>FORMATTING</td>
<td>Memory card formatting is currently being performed.</td>
</tr>
<tr>
<td>COMPLETED</td>
<td>Save or load processing has been completed.</td>
</tr>
<tr>
<td>PRESS RESET KEY.</td>
<td>Press the RESET key.</td>
</tr>
<tr>
<td>TURN OFF POWER.</td>
<td>Turn the power off, then back on again.</td>
</tr>
</tbody>
</table>
File system error codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>99</td>
<td>A portion that precedes the FAT area on the memory card is disrupted.</td>
</tr>
<tr>
<td>102</td>
<td>The memory card does not have sufficient free space.</td>
</tr>
<tr>
<td>105</td>
<td>No memory card is mounted.</td>
</tr>
<tr>
<td>106</td>
<td>A memory card is already mounted.</td>
</tr>
<tr>
<td>110</td>
<td>The specified directory cannot be found.</td>
</tr>
<tr>
<td>111</td>
<td>There are too many files under the root directory to allow a directory to be added.</td>
</tr>
<tr>
<td>114</td>
<td>The specified file cannot be found.</td>
</tr>
<tr>
<td>115</td>
<td>The specified file is protected.</td>
</tr>
<tr>
<td>117</td>
<td>The file has not yet been opened.</td>
</tr>
<tr>
<td>118</td>
<td>The file is already open.</td>
</tr>
<tr>
<td>119</td>
<td>The file is locked.</td>
</tr>
<tr>
<td>121</td>
<td>There is not enough free space on the memory card.</td>
</tr>
<tr>
<td>122</td>
<td>The specified file name is invalid.</td>
</tr>
<tr>
<td>124</td>
<td>The extension of the specified file is invalid.</td>
</tr>
<tr>
<td>129</td>
<td>A non-corresponding function was specified.</td>
</tr>
<tr>
<td>130</td>
<td>The specification of a device is invalid.</td>
</tr>
<tr>
<td>131</td>
<td>The specification of a pathname is invalid.</td>
</tr>
<tr>
<td>133</td>
<td>Multiple files are open at the same time.</td>
</tr>
<tr>
<td>135</td>
<td>The device is not formatted.</td>
</tr>
<tr>
<td>140</td>
<td>The file has the read/write disabled attribute.</td>
</tr>
</tbody>
</table>

Restrictions

- **Memory card size**
 The size of the memory card to be used must be larger than that of the RAM module mounted in the CNC. The size of the RAM module can be determined from the system configuration screen.

- **Memory card specifications**
 Use a memory card that conforms to PCMCIA Ver. 2.0, or JEIDA Ver. 4.1.

- **Attribute memory**
 A memory card which has no attribute memory, or no device information in its attribute memory, cannot be used.

- **Compatibility of saved data**
 Data saved to a memory card is compatible only with CNCs that have the same hardware configuration and the same option configuration.

- **Flash ROM card**
 A flash ROM card can be used only for data loading.

- **Operation during automatic operation**
 During automatic operation, the contents of a memory card cannot be displayed, formatted, or deleted. To enable these operations, therefore, stop or suspend automatic operation.
8.11 DATA INPUT/OUTPUT USING A MEMORY CARD

Setting the I/O channel (parameter No. 20) to 4 enables files on a memory card inserted in the memory card interface beside the indicator to be referenced. It also enables different types of data such as part programs, parameters, and offset data to be input and output in text file format. The major functions are listed below.

- Displaying a directory of stored files
 The files stored on a memory card can be displayed on the directory screen.

- Searching for a file
 A search is made for a file on a memory card and, if found, it is displayed on the directory screen.

- Reading a file
 Text-format files can be read from a memory card.

- Writing a file
 Data such as part programs can be stored to a memory card in text file format.

- Deleting a file
 A file can be selected and deleted from a memory card.
Displaying a directory of stored files

Procedure

1. Press the EDIT switch on the machine operator’s panel.
2. Press function key \[PROG \].
3. Press the rightmost soft key \[\rightarrow \] (continuous menu key).
4. Press soft key \[CARD \]. The screen shown below is displayed. Using page keys \[\uparrow \] and \[\downarrow \], the screen can be scrolled.

```
<table>
<thead>
<tr>
<th>No.</th>
<th>FILE NAME</th>
<th>SIZE</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td>O1000</td>
<td>123456</td>
<td>97/07/10</td>
</tr>
<tr>
<td>0002</td>
<td>O1001</td>
<td>8458</td>
<td>97/07/30</td>
</tr>
<tr>
<td>0003</td>
<td>O0002</td>
<td>3250</td>
<td>97/07/30</td>
</tr>
<tr>
<td>0004</td>
<td>O2000</td>
<td>73456</td>
<td>97/07/31</td>
</tr>
<tr>
<td>0005</td>
<td>O2001</td>
<td>3444</td>
<td>97/07/31</td>
</tr>
<tr>
<td>0006</td>
<td>O3001</td>
<td>8453</td>
<td>97/08/02</td>
</tr>
<tr>
<td>0007</td>
<td>O3300</td>
<td>406</td>
<td>97/08/05</td>
</tr>
<tr>
<td>0008</td>
<td>O3400</td>
<td>2420</td>
<td>97/07/31</td>
</tr>
<tr>
<td>0009</td>
<td>O3500</td>
<td>7460</td>
<td>97/07/31</td>
</tr>
</tbody>
</table>
```

5. Comments relating to each file can be displayed by pressing soft key \[DIR+ \].

```
<table>
<thead>
<tr>
<th>No.</th>
<th>FILE NAME</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td>O1000</td>
<td>(COMMENT )</td>
</tr>
<tr>
<td>0002</td>
<td>O1001</td>
<td>(SUB PROGRAM )</td>
</tr>
<tr>
<td>0003</td>
<td>O0002</td>
<td>(12345678 )</td>
</tr>
<tr>
<td>0004</td>
<td>O2000</td>
<td></td>
</tr>
<tr>
<td>0005</td>
<td>O2001</td>
<td></td>
</tr>
<tr>
<td>0006</td>
<td>O3001</td>
<td>(SKIP–K)</td>
</tr>
<tr>
<td>0007</td>
<td>O3300</td>
<td>(HI–SPEED )</td>
</tr>
<tr>
<td>0008</td>
<td>O3400</td>
<td></td>
</tr>
<tr>
<td>0009</td>
<td>O3500</td>
<td>(TEST PROGRAM)</td>
</tr>
</tbody>
</table>
```

6. Repeatedly pressing soft key \[DIR+ \] toggles the screen between the display of comments and the display of sizes and dates. Any comment described after the O number in the file is displayed. Up to 18 characters can be displayed on the screen.
Searching for a file

Procedure

1. Press the EDIT switch on the machine operator’s panel.

2. Press function key [PROG].

3. Press the rightmost soft key (continuous menu key).

4. Press soft key [CARD]. The screen shown below is displayed.

<table>
<thead>
<tr>
<th>DIRECTORY (M–CARD)</th>
<th>O0034 N00045</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>FILE NAME</td>
</tr>
<tr>
<td>0001</td>
<td>O1000</td>
</tr>
<tr>
<td>0002</td>
<td>O1001</td>
</tr>
<tr>
<td>0003</td>
<td>O0002</td>
</tr>
<tr>
<td>0004</td>
<td>O2000</td>
</tr>
<tr>
<td>0005</td>
<td>O2001</td>
</tr>
<tr>
<td>0006</td>
<td>O3001</td>
</tr>
<tr>
<td>0007</td>
<td>O3300</td>
</tr>
<tr>
<td>0008</td>
<td>O3400</td>
</tr>
<tr>
<td>0009</td>
<td>O3500</td>
</tr>
</tbody>
</table>

5. Press soft key [(OPRT)].

6. Set the number of the desired file number with soft key [F SRH]. Then, start the search by pressing soft key [EXEC]. If found, the file is displayed at the top of the directory screen.

 When a search is made for file number 19

<table>
<thead>
<tr>
<th>DIRECTORY (M–CARD)</th>
<th>O0034 N00045</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>FILE NAME</td>
</tr>
<tr>
<td>0019</td>
<td>O1000</td>
</tr>
<tr>
<td>0020</td>
<td>O1010</td>
</tr>
<tr>
<td>0021</td>
<td>O1020</td>
</tr>
<tr>
<td>0022</td>
<td>O1030</td>
</tr>
</tbody>
</table>
Reading a file

Procedure

1. Press the EDIT switch on the machine operator’s panel.

2. Press function key [PROG].

3. Press the rightmost soft key (continuous menu key).

4. Press soft key [CARD]. Then, the screen shown below is displayed.

<table>
<thead>
<tr>
<th>No.</th>
<th>FILE NAME</th>
<th>SIZE</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td>O1000</td>
<td>123456</td>
<td>96/07/10</td>
</tr>
<tr>
<td>0002</td>
<td>O1001</td>
<td>8458</td>
<td>96/07/30</td>
</tr>
<tr>
<td>0003</td>
<td>O0002</td>
<td>3250</td>
<td>96/07/30</td>
</tr>
<tr>
<td>0004</td>
<td>O2000</td>
<td>73456</td>
<td>96/07/31</td>
</tr>
<tr>
<td>0005</td>
<td>O2001</td>
<td>3444</td>
<td>96/07/31</td>
</tr>
<tr>
<td>0006</td>
<td>O3001</td>
<td>8483</td>
<td>96/08/02</td>
</tr>
<tr>
<td>0007</td>
<td>O3300</td>
<td>406</td>
<td>96/08/05</td>
</tr>
<tr>
<td>0008</td>
<td>O3400</td>
<td>2420</td>
<td>96/07/31</td>
</tr>
<tr>
<td>0009</td>
<td>O3500</td>
<td>7460</td>
<td>96/07/31</td>
</tr>
</tbody>
</table>

5. Press soft key [(OPRT)].

6. To specify a file number, press soft key [F READ]. The screen shown below is displayed.

<table>
<thead>
<tr>
<th>No.</th>
<th>FILE NAME</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0019</td>
<td>O1000</td>
<td>(MAIN PROGRAM)</td>
</tr>
<tr>
<td>0020</td>
<td>O1010</td>
<td>(SUBPROGRAM-1)</td>
</tr>
<tr>
<td>0021</td>
<td>O1030</td>
<td>(COMMENT)</td>
</tr>
</tbody>
</table>

7. Enter file number 20 from the MDI panel, then set the file number by pressing soft key [F SET]. Next, enter program number 120, then set the program number by pressing soft key [O SET]. Then, press soft key [EXEC].

- File number 20 is registered as O0120 in the CNC.
- Set a program number to register a read file with a separate O number. If no program number is set, the O number in the file name column is registered.
8 To specify a file with its file name, press soft key [N READ] in step 6 above. The screen shown below is displayed.

```
DIRECTORY (M–CARD)       O0001 N00010
  No.   FILE NAME    COMMENT
  0012   O0050        (MAIN PROGRAM)
  0013   TESTPRO      (SUB PROGRAM–1)
  0014   O0060        (MACRO PROGRAM)
```

```
READ        FILE NAME  =TESTPRO
            PROGRAM No.  =1230
>
EDIT    15:40:21
          15:40:21
(F NAME)(O SET)(STOP)(CAN)(EXEC)
```

9 To register file name TESTPRO as O1230, enter file name TESTPRO from the MDI panel, then set the file name with soft key [F NAME]. Next, enter program number 1230, then set the program number with soft key [O SET]. Then, press soft key [EXEC].
Writing a file

Procedure

1. Press the EDIT switch on the machine operator’s panel.

2. Press function key PROG.

3. Press the rightmost soft key (continuous menu key).

4. Press soft key [CARD]. The screen shown below is displayed.

```
PROG (OPRT) DIR
DIRECTORY (M–CARD)   SIZE   DATE
No. FILE NAME  SIZE   DATE
0001 O1000  123456  96/07/10
0002 O1001  8458   96/07/30
0003 O0002  3250   96/07/30
0004 O2000  73456  96/07/31
0005 O2001  3444  96/07/31
0006 O3001  8483   96/08/02
0007 O3300  406   96/08/05
0008 O3400  2420  96/07/31
0009 O3500  7460  96/07/31
```

5. Press soft key [(OPRT)].

6. Press soft key [PUNCH].

7. Enter a desired O number from the MDI panel, then set the program number with soft key [O SET].

 When soft key [EXEC] is pressed after the setting shown below has been made, for example, the file is written under program number O1230.

```
PUNCH FILE NAME = PROGRAM No. =1230
> EDIT  ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 15:40:21
(F NAME) (O SET) (STOP) (CAN) (EXEC)
```

8. In the same way as for O number setting, enter a desired file name from the MDI panel, then set the file name with soft key [F SET].

 When soft key [EXEC] is pressed after the setting shown below has been made, for example, the file is written under program number O1230 and file name ABCD12.

```
PUNCH FILE NAME =ABCD12 PROGRAM No. =1230
> EDIT  ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 15:40:21
(F NAME) (O SET) (STOP) (CAN) (EXEC)
```
Explanations

- **Registering the same file name**

 When a file having the same name is already registered in the memory card, the existing file will be overwritten.

- **Writing all programs**

 To write all programs, set program number = 9999. If no file name is specified in this case, file name PROGRAM.ALL is used for registration.

- **File name restrictions**

 The following restrictions are imposed on file name setting:

 <File name setting> × × × × × × × . □□□

 Not longer than 8 characters
 Extension not longer than 3 characters
Deleting a file

Procedure

1. Press the EDIT switch on the machine operator’s panel.

2. Press function key [PROG].

3. Press the rightmost soft key [D] (continuous menu key).

4. Press soft key [CARD]. The screen shown below is displayed.

```
PROG (OPRT) DIR
DIRECTORY (M–CARD)
No. FILE NAME SIZE DATE
0001 O1000 123456 197/07/10
0002 O1001 8458 197/07/30
0003 O0002 3250 197/07/30
0004 O2000 73456 197/07/31
0005 O2001 3444 197/07/31
0006 O3001 8483 197/08/02
0007 O3300 406 197/08/05
0008 O3400 2420 197/07/31
0009 O3500 7460 197/07/31
```

5. Press soft key [(OPRT)].

6. Set the number of the desired file with soft key [DELETE], then press soft key [EXEC]. The file is deleted, and the directory screen is displayed again.

When file number 21 is deleted

```
PROG (OPRT) DIR
DIRECTORY (M–CARD)
No. FILE NAME COMMENT
0001 O1000 (MAIN PROGRAM)
0020 O1010 (SUBPROGRAM–1)
0021 O1020 (COMMENT )
0022 O1030 (COMMENT )
```

File name O1020 is deleted.

```
PROG (OPRT) DIR
DIRECTORY (M–CARD)
No. FILE NAME COMMENT
0001 O1000 (MAIN PROGRAM)
0020 O1010 (SUBPROGRAM–1)
0021 O1020 (COMMENT )
0022 O1030 (COMMENT )
```

File number 21 is assigned to the next file name.
Batch input/output with a memory card

On the ALL IO screen, different types of data including part programs, parameters, offset data, pitch error data, custom macros, and workpiece coordinate system data can be input and output using a memory card; the screen for each type of data need not be displayed for input/output.

<table>
<thead>
<tr>
<th>Data item name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part program</td>
</tr>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>Offset data</td>
</tr>
<tr>
<td>Pitch error data</td>
</tr>
<tr>
<td>Custom macro</td>
</tr>
<tr>
<td>Workpiece coordinate system data</td>
</tr>
<tr>
<td>(additional coordinate systems)</td>
</tr>
</tbody>
</table>

Procedure

1. Press the EDIT switch on the machine operator’s panel.
2. Press function key `SYSTEM`.
3. Press the rightmost soft key (continuous menu key) several times.
4. Press soft key [ALL IO]. The screen shown below is displayed.

```
PROG (OPRT) OFFSETPARAM
READ/PUNCH (PROGRAM)   O0001 N00001
No.    FILE NAME    SIZE    DATE
*0001  O0222        332010  96–04–06
*0002  O1003        334450  96–05–04
*0003  MACROVAR.DAT 653400  96–05–12
*0004  O0002        341205  96–05–13
[PROGRAM]
  *00001  O0002  O0003  O0005  O0100  O0020
  *00006  O0004  O0110  O0200  O2200  O0441
  *00330
>
EDIT  ...  ...  ...  ...  10:07:37
(  PROG  ) (  PARAM  ) (  OFFSET  ) (  )  (  OPRT  )
```

Upper part: Directory of files on the memory card
Lower part: Directory of registered programs

5. With cursor keys ↑ and ↓, the user can choose between upper part scrolling and lower part scrolling. (An asterisk (*) displayed at the left edge indicates the part for which scrolling is possible.)

 - **↑**: Used for memory card file directory scrolling.
 - **↓**: Used for program directory scrolling.

6. With page keys ↑ and ↓, scroll through the file directory or program directory.
Explanations

- Each data item

When this screen is displayed, the program data item is selected. The soft keys for other screens are displayed by pressing the rightmost soft key (continuous menu key). Soft key [M–CARD] represents a separate memory card function for saving and restoring system RAM data. (See Section 8.10.7.)

- Program directory display

Program directory display does not match bit 0 (NAM) of parameter No. 3107, or bit 4 (SOR) of parameter No. 3107.

- Using each function

Display the following soft keys with soft key [(OPRT)].

The operation of each function is the same as on the directory (memory card) screen. Soft key [O SET], used for program number setting, and the “PROGRAM NUMBER =” indication are not displayed for data items other than program.

[F SRH]: Finds a specified file number.
[F READ]: Reads a specified file number.
[PUNCH]: Writes a file.
[N READ]: Reads a file under a specified file name.
[DELETE]: Deletes a specified file number.

NOTE

See Section 4.10 of Part III for explanations about the RMT mode operation based on a program from a memory card and about the subprogram call function based on the M198 command.
File format and error messages

File format

All files that are read from and written to a memory card are of text format. The format is described below.

A file starts with % or LF, followed by the actual data. A file always ends with %. In a read operation, data between the first % and the next LF is skipped. Each block ends with an LF, not a semicolon (;).

- **LF**: 0A (hexadecimal) of ASCII code
- When a file containing lowercase letters, kana characters, and several special characters (such as $, ¥, and !) is read, those letters and characters are ignored.

Example:

```
% 
O0001(MEMORY CARD SAMPLE FILE)  
G17 G49 G97  
G92X-11.3Y2.33  
.  
M30  
%
```

- ASCII code is used for input/output, regardless of the setting parameter (ISO/EIA).
- Bit 3 (NCR) of parameter No. 0100 can be used to specify whether the end of block code (EOB) is output as “LF” only, or as “LF, CR, CR.”

Error messages

If an error occurs during memory card input/output, a corresponding error message is displayed.

```
0028  O0003  7382  96-06-14  
M-CARD ERROR  
FILE No. = 1  PROGRAM No. = 13  
>_<  
EDIT  * * * * * * * * * *  
15:40:21  
( F SET )  ( O SET )  ( STOP )  ( CAN )  ( EXEC )  
```

* * * * represents a memory card error code.
Memory card error codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>99</td>
<td>A portion that precedes the FAT area on the memory card is disrupted.</td>
</tr>
<tr>
<td>102</td>
<td>The memory card does not have sufficient free space.</td>
</tr>
<tr>
<td>105</td>
<td>No memory card is mounted.</td>
</tr>
<tr>
<td>106</td>
<td>A memory card is already mounted.</td>
</tr>
<tr>
<td>110</td>
<td>The specified directory cannot be found.</td>
</tr>
<tr>
<td>111</td>
<td>There are too many files under the root directory to allow a directory to be added.</td>
</tr>
<tr>
<td>114</td>
<td>The specified file cannot be found.</td>
</tr>
<tr>
<td>115</td>
<td>The specified file is protected.</td>
</tr>
<tr>
<td>117</td>
<td>The file has not yet been opened.</td>
</tr>
<tr>
<td>118</td>
<td>The file is already open.</td>
</tr>
<tr>
<td>119</td>
<td>The file is locked.</td>
</tr>
<tr>
<td>121</td>
<td>There is not enough free space on the memory card.</td>
</tr>
<tr>
<td>122</td>
<td>The specified file name is invalid.</td>
</tr>
<tr>
<td>124</td>
<td>The extension of the specified file is invalid.</td>
</tr>
<tr>
<td>129</td>
<td>A non-corresponding function was specified.</td>
</tr>
<tr>
<td>130</td>
<td>The specification of a device is invalid.</td>
</tr>
<tr>
<td>131</td>
<td>The specification of a pathname is invalid.</td>
</tr>
<tr>
<td>133</td>
<td>Multiple files are open at the same time.</td>
</tr>
<tr>
<td>135</td>
<td>The device is not formatted.</td>
</tr>
<tr>
<td>140</td>
<td>The file has the read/write disabled attribute.</td>
</tr>
</tbody>
</table>
This chapter describes how to edit programs registered in the CNC. Editing includes the insertion, modification, deletion, and replacement of words. Editing also includes deletion of the entire program and automatic insertion of sequence numbers. The extended part program editing function can copy, move, and merge programs. This chapter also describes program number search, sequence number search, word search, and address search, which are performed before editing the program.

General
9.1 INSERTING, ALTERING AND DELETING A WORD

This section outlines the procedure for inserting, modifying, and deleting a word in a program registered in memory.

Procedure for inserting, altering and deleting a word

1. Select EDIT mode.
2. Press PROG.
3. Select a program to be edited.
 If a program to be edited is selected, perform the operation 4.
 If a program to be edited is not selected, search for the program number.
4. Search for a word to be modified.
 - Scan method
 - Word search method
5. Perform an operation such as altering, inserting, or deleting a word.

Explanation

- Concept of word and editing unit

A word is an address followed by a number. With a custom macro, the concept of word is ambiguous.
So the editing unit is considered here.
The editing unit is a unit subject to alteration or deletion in one operation.
In one scan operation, the cursor indicates the start of an editing unit.
An insertion is made after an editing unit.
Definition of editing unit
(i) Program portion from an address to immediately before the next address
(ii) An address is an alphabet, IF, WHILE, GOTO, END, DO=, or ; (EOB).

According to this definition, a word is an editing unit.
The word “word,” when used in the description of editing, means an editing unit according to the precise definition.

WARNING
The user cannot continue program execution after altering, inserting, or deleting data of the program by suspending machining in progress by means of an operation such as a single block stop or feed hold operation during program execution. If such a modification is made, the program may not be executed exactly according to the contents of the program displayed on the screen after machining is resumed. So, when the contents of memory are to be modified by part program editing, be sure to enter the reset state or reset the system upon completion of editing before executing the program.
9.1.1 Word Search

A word can be searched for by merely moving the cursor through the text (scanning), by word search, or by address search.

Procedure for scanning a program

1. Press the cursor key \(\rightarrow \)
 The cursor moves forward word by word on the screen; the cursor is displayed at a selected word.

2. Press the cursor key \(\leftarrow \)
 The cursor moves backward word by word on the screen; the cursor is displayed at a selected word.

Example) When Z1250.0 is scanned

<table>
<thead>
<tr>
<th>Program</th>
<th>O0050 N01234</th>
</tr>
</thead>
<tbody>
<tr>
<td>O0050</td>
<td></td>
</tr>
<tr>
<td>N01234 X100.0</td>
<td>Z1250.0</td>
</tr>
<tr>
<td>S12</td>
<td>;</td>
</tr>
<tr>
<td>N56789 M03</td>
<td>;</td>
</tr>
<tr>
<td>M02</td>
<td>%</td>
</tr>
</tbody>
</table>

3. Holding down the cursor key \(\rightarrow \) or \(\leftarrow \) scans words continuously.

4. The first word of the next block is searched for when the cursor key \(\downarrow \) is pressed.

5. The first word of the previous block is searched for when the cursor key \(\uparrow \) is pressed.

6. Holding down the cursor key \(\downarrow \) or \(\uparrow \) moves the cursor to the head of a block continuously.

7. Pressing the page key \(\text{PAGE} \downarrow \) displays the next page and searches for the first word of the page.

8. Pressing the page key \(\text{PAGE} \uparrow \) displays the previous page and searches for the first word of the page.

9. Holding down the page key \(\text{PAGE} \downarrow \) or \(\text{PAGE} \uparrow \) displays one page after another.
Procedure for searching a word

Example) of Searching for S12

```
PROGRAM O0050 N01234
O0050 ;
N01234 X100.0 Z1250.0 ;
S12 ;
N56789 M03 ;
M02 ;
%
```

1. Key in address `S`
2. Key in `1 2`
 - S12 cannot be searched for if only S1 is keyed in.
 - S09 cannot be searched for by keying in only S9.
 To search for S09, be sure to key in S09.
3. Pressing the `[SRH↓]` key starts search operation.
 Upon completion of search operation, the cursor is displayed at S12.
 Pressing the `[SRH↑]` key rather than the `[SRH↓]` key performs search operation in the reverse direction.

Procedure for searching an address

Example) of Searching for M03

```
PROGRAM O0050 N01234
O0050 ;
N01234 X100.0 Z1250.0 ;
S12 ;
N56789 M03 ;
M02 ;
%
```

1. Key in address `M`
2. Press the `[SRH↓]` key.
 Upon completion of search operation, the cursor is displayed at M03.
 Pressing the `[SRH↑]` key rather than the `[SRH↓]` key performs search operation in the reverse direction.

Alarm

<table>
<thead>
<tr>
<th>Alarm number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>71</td>
<td>The word or address being searched for was not found.</td>
</tr>
</tbody>
</table>
9.1.2 Heading a Program

The cursor can be jumped to the top of a program. This function is called heading the program pointer. This section describes the three methods for heading the program pointer.

Procedure for Heading a Program

Method 1
1. Press \texttt{RESET} when the program screen is selected in EDIT mode. When the cursor has returned to the start of the program, the contents of the program are displayed from its start on the screen.

Method 2
1. Search for the program number.
2. Press address \texttt{O}, when a program screen is selected in the MEMORY or EDIT mode.
3. Input a program number.
4. Press the soft key \texttt{[O SRH]}.

Method 3
1. Select MEMORY or EDIT mode.
2. Press \texttt{[PROG]}.
3. Press the \texttt{[(OPRT)]} key.
4. Press the \texttt{[REWIND]} key.
9.1.3 Inserting a Word

Procedure for inserting a word

1. Search for or scan the word immediately before a word to be inserted.
2. Key in an address to be inserted.
3. Key in data.
4. Press the [INSERT] key.

Example of Inserting T15

Procedure

1. Search for or scan Z1250.

```
Program O0050 N01234
O0050 ;
N01234 X100.0 Z1250.0 ;
S12 ;
N56789 M03 ;
M02 ;
%
```

Z1250.0 is searched for/ scanned.

2. Key in T 1 5 .

3. Press the [INSERT] key.

```
Program O0050 N01234
O0050 ;
N01234 X100.0 Z1250.0 T15 ;
S12 ;
N56789 M03 ;
M02 ;
%
```

T15 is inserted.
9.1.4 Altering a Word

Procedure for altering a word

1. Search for or scan a word to be altered.
2. Key in an address to be inserted.
3. Key in data.
4. Press the ALTER key.

Example of changing T15 to M15

Procedure

1. Search for or scan T15.

```
Program O0050 N01234
O0050 ;
N01234 X100.0 Z1250.0  T15 ;
S12 ;
N56789 M03 ;
M02 ;
%
```

T15 is searched for/scanned.

2. Key in M 15 .

3. Press the ALTER key.

```
Program O0050 N01234
O0050 ;
N1234 X100.0 Z1250.0  M15 ;
S12 ;
N5678 M03 ;
M02 ;
%
```

T15 is changed to M15.
9.1.5
Deleting a Word

Procedure for deleting a word

1. Search for or scan a word to be deleted.
2. Press the DELETE key.

Example of deleting X100.0

Procedure

1. Search for or scan X100.0.

Program
O0050 N01234
N01234 X100.0 Z1250.0 M15 ;
S12 ;
N56789 M03 ;
M02 ;
%

X100.0 is searched for/ scanned.

2. Press the DELETE key.

Program
O0050 N01234
N01234 Z1250.0 M15 ;
S12 ;
N56789 M03 ;
M02 ;
%

X100.0 is deleted.
9.2 DELETING BLOCKS

A block or blocks can be deleted in a program.

9.2.1 Deleting a Block

The procedure below deletes a block up to its EOB code; the cursor advances to the address of the next word.

Procedure for deleting a block

1. Search for or scan address N for a block to be deleted.
2. Key in EOB.
3. Press the DELETE key.

Example of deleting a block of No.1234

Procedure

1. Search for or scan N01234.

```
Program
O0050 ;
N01234 Z1250.0 M15 ;
S12 ;
N56789 M03 ;
M02 ;
%
```

N01234 is searched for/scanned.

2. Key in EOB.

3. Press the DELETE key.

```
Program
O0050 ;
S12 ;
N56789 M03 ;
M02 ;
%
```

Block containing N01234 has been deleted.
9.2.2 Deleting Multiple Blocks

The blocks from the currently displayed word to the block with a specified sequence number can be deleted.

Procedure for deleting multiple blocks

1. Search for or scan a word in the first block of a portion to be deleted.

2. Key in address \textbf{N}.

3. Key in the sequence number for the last block of the portion to be deleted.

4. Press the \textbf{DELETE} key.

Example of deleting blocks from a block containing N01234 to a block containing N56789

Procedure

1. Search for or scan N01234.

\begin{verbatim}
Program
O0050 ;
N01234 Z1250.0 M15 ;
S12 ;
N56789 M03 ;
M02 ;
%
\end{verbatim}

N01234 is searched for/scanned.

2. Key in \textbf{N}56789.

\begin{verbatim}
Program
O0050 ;
N01234 Z1250.0 M15 ;
S12 ;
N56789 M03 ;
M02 ;
%
\end{verbatim}

Underlined part is deleted.

3. Press the \textbf{DELETE} key.

\begin{verbatim}
Program
O0050 ;
M02 ;
%
\end{verbatim}

Blocks from block containing N01234 to block containing N56789 have been deleted.
9.3 PROGRAM NUMBER SEARCH

When memory holds multiple programs, a program can be searched for. There are three methods as follows.

Procedure for program number search

Method 1
1. Select EDIT or MEMORY mode.
2. Press PROG to display the program screen.
3. Key in address O.
4. Key in a program number to be searched for.
5. Press the [O SRH] key.
6. Upon completion of search operation, the program number searched for is displayed in the upper-right corner of the CRT screen.
 - If the program is not found, P/S alarm No. 71 occurs.

Method 2
1. Select EDIT or MEMORY mode.
2. Press PROG to display the program screen.
 - In this case, the next program in the directory is searched for.

Method 3
This method searches for the program number (0001 to 0015) corresponding to a signal on the machine tool side to start automatic operation. Refer to the relevant manual prepared by the machine tool builder for detailed information on operation.

1. Select MEMORY mode.
2. Set the reset state(*1)
 - The reset state is the state where the LED for indicating that automatic operation is in progress is off. (Refer to the relevant manual of the machine tool builder.)
3. Set the program number selection signal on the machine tool side to a number from 01 to 15.
 - If the program corresponding to a signal on the machine tool side is not registered, P/S alarm (No. 059) is raised.
4. Press the cycle start button.
 - When the signal on the machine tool side represents 00, program number search operation is not performed.

Alarm

<table>
<thead>
<tr>
<th>Alarm No.</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>59</td>
<td>The program with the selected number cannot be searched during external program number search.</td>
</tr>
<tr>
<td>71</td>
<td>The specified program number was not found during program number search.</td>
</tr>
</tbody>
</table>
9.4 SEQUENCE NUMBER SEARCH

Sequence number search operation is usually used to search for a sequence number in the middle of a program so that execution can be started or restarted at the block of the sequence number.

Example) Sequence number 02346 in a program (O0002) is searched for.

<table>
<thead>
<tr>
<th>Program</th>
<th>O0001 ;</th>
<th>N01234 X100.0 Z100.0 ;</th>
<th>S12 ;</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected program</td>
<td>O0002 ;</td>
<td>N02345 X20.0 Z20.0 ;</td>
<td>N02346 X10.0 Z10.0 ;</td>
</tr>
<tr>
<td>Target sequence number is found.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This section is searched starting at the beginning.
(Search operation is performed only within a program.)

Procedure for sequence number search

1. Select **MEMORY** mode.
2. Press **[PROG]**.
3. If the program contains a sequence number to be searched for, perform the operations 4 to 7 below.
 - If the program does not contain a sequence number to be searched for, select the program number of the program that contains the sequence number to be searched for.
4. Key in address **[N]**.
5. Key in a sequence number to be searched for.
6. Press the **[N SRH]** key.
7. Upon completion of search operation, the sequence number searched for is displayed in the upper–right corner of the CRT screen. If the specified sequence number is not found in the program currently selected, P/S alarm (No. 060) occurs.
Explanations

• Operation during Search

Those blocks that are skipped do not affect the CNC. This means that the data in the skipped blocks such as coordinates and M, S, and T codes does not alter the CNC coordinates and modal values. So, in the first block where execution is to be started or restarted by using a sequence number search command, be sure to enter required M, S, and T codes and coordinates. A block searched for by sequence number search usually represents a point of shifting from one process to another. When a block in the middle of a process must be searched for to restart execution at the block, specify M, S, and T codes, G codes, coordinates, and so forth as required from the MDI after closely checking the machine tool and CNC states at that point.

• Checking during search

During search operation, the following checks are made:
- Optional block skip
- P/S alarm (No. 003 to 010)

Restrictions

• Searching in sub-program

During sequence number search operation, M98Pxxxx (subprogram call) is not executed. So an P/S alarm (No.060) is raised if an attempt is made to search for a sequence number in a subprogram called by the program currently selected.

<table>
<thead>
<tr>
<th>Main program</th>
<th>Subprogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1234</td>
<td>O5678</td>
</tr>
<tr>
<td></td>
<td>N88888</td>
</tr>
<tr>
<td>M98 P5678 ;</td>
<td>M99 ;</td>
</tr>
</tbody>
</table>

If an attempt is made to search for N8888 in the example above, an alarm is raised.

Alarm

<table>
<thead>
<tr>
<th>Alarm No.</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>Command sequence number was not found in the sequence number search.</td>
</tr>
</tbody>
</table>
9.5 DELETING PROGRAMS

Programs registered in memory can be deleted, either one program by one program or all at once. Also, More than one program can be deleted by specifying a range.

9.5.1 Deleting One Program

A program registered in memory can be deleted.

Procedure for deleting one program

1. Select the EDIT mode.
2. Press PROG to display the program screen.
3. Key in address 0.
4. Key in a desired program number.
5. Press the DELETE key.

The program with the entered program number is deleted.

9.5.2 Deleting All Programs

All programs registered in memory can be deleted.

Procedure for deleting all programs

1. Select the EDIT mode.
2. Press PROG to display the program screen.
3. Key in address 0.
5. Press edit key DELETE to delete all programs.
Programs within a specified range in memory are deleted.

9.5.3 Deleting More Than One Program by Specifying a Range

Procedure for deleting more than one program by specifying a range

1. Select the **EDIT** mode.

2. Press **PROG** to display the program screen.

3. Enter the range of program numbers to be deleted with address and numeric keys in the following format:
 OXXXX,OYYYY
 where XXXX is the starting number of the programs to be deleted and YYYYY is the ending number of the programs to be deleted.

4. Press edit key **DELETE** to delete programs No. XXXX to No. YYYY.
With the extended part program editing function, the operations described below can be performed using soft keys for programs that have been registered in memory.

Following editing operations are available:

- All or part of a program can be copied or moved to another program.
- One program can be merged at free position into other programs.
- A specified word or address in a program can be replaced with another word or address.
9.6.1 Copying an Entire Program

A new program can be created by copying a program.

In Fig. 9.6.1, the program with program number xxxx is copied to a newly created program with program number yyyy. The program created by copy operation is the same as the original program except the program number.

Procedure of copying an entire program

1. Enter the **EDIT** mode.

2. Press function key \[**PROG**\].

3. Press soft key \[**[OPRT]**\].

4. Press the continuous menu key.

5. Press soft key \[**EX–EDT**\].

6. Check that the screen for the program to be copied is selected and press soft key \[**COPY**\].

7. Press soft key \[**ALL**\].

8. Enter the number of the new program (with only numeric keys) and press the **INPUT** key.

9. Press soft key \[**EXEC**\].
9.6.2 Copying Part of a Program

A new program can be created by copying part of a program.

In Fig. 9.6.2, part B of the program with program number xxxx is copied to a newly created program with program number yyyy. The program for which an editing range is specified remains unchanged after copy operation.

Procedure for copying part of a program

1. Perform steps 1 to 6 in subsection III–9.6.1.

2. Move the cursor to the start of the range to be copied and press soft key [CRSR].

3. Move the cursor to the end of the range to be copied and press soft key [-CRSR] or [-BTM] (in the latter case, the range to the end of the program is copied regardless of the position of the cursor).

4. Enter the number of the new program (with only numeric keys) and press the [INPUT] key.

5. Press soft key [EXEC].
9.6.3 Moving Part of a Program

A new program can be created by moving part of a program.

In Fig. 9.6.3, part B of the program with program number xxxx is moved to a newly created program with program number yyyy; part B is deleted from the program with program number xxxx.

Procedure for moving part of a program

1. Perform steps 1 to 5 in subsection III–9.6.1.

2. Check that the screen for the program to be moved is selected and press soft key [MOVE].

3. Move the cursor to the start of the range to be moved and press soft key [CRSR–].

4. Move the cursor to the end of the range to be moved and press soft key [-CRSR] or [-BTM](in the latter case, the range to the end of the program is copied regardless of the position of the cursor).

5. Enter the number of the new program (with only numeric keys) and press the INPUT key.

6. Press soft key [EXEC].
9.6.4 Merging a Program

Another program can be inserted at an arbitrary position in the current program.

![Diagram of program merging](image)

Fig. 9.6.4 Merging a program at a specified location

In Fig. 9.6.4, the program with program number XXXX is merged with the program with program number YYYY. The OYYYY program remains unchanged after merge operation.

Procedure for merging a program

1. Perform steps 1 to 5 in subsection III–9.6.1.
2. Check that the screen for the program to be edited is selected and press soft key [MERGE].
3. Move the cursor to the position at which another program is to be inserted and press soft key [~CRSR] or [~BTTM] (in the latter case, the end of the current program is displayed).
4. Enter the number of the program to be inserted (with only numeric keys) and press the [INPUT] key.
5. Press soft key [EXEC].

The program with the number specified in step 4 is inserted before the cursor positioned in step 3.
9.6.5 Supplementary Explanation for Copying, Moving and Merging

Explanations

• Setting an editing range

The setting of an editing range start point with `[CRSR-]` can be changed freely until an editing range end point is set with `[–CRSR]` or `[–BTTM]`. If an editing range start point is set after an editing range end point, the editing range must be reset starting with a start point.

The setting of an editing range start point and end point remains valid until an operation is performed to invalidate the setting.

One of the following operations invalidates a setting:

* An edit operation other than address search, word search/scan, and search for the start of a program is performed after a start point or end point is set.

* Processing is returned to operation selection after a start point or end point is set.

• Without specifying a program number

In copying program and moving program, if [EXEC] is pressed without specifying a program number after an editing range end point is set, a program with program number O0000 is registered as a work program. This O0000 program has the following features:

* The program can be edited in the same way as a general program. (Do not run the program.)

* If a copy or move operation is newly performed, the previous information is deleted at execution time, and newly set information (all or part of the program) is re–registered. (In merge operation, the previous information is not deleted.) However, the program, when selected for foreground operation, cannot be re–registered in the background. (A BP/S140 alarm is raised.) When the program is re–registered, a free area is produced. Delete such a free area with the [RESET] key.

* When the program becomes unnecessary, delete the program by a normal editing operation.

• Editing when the system waiting for a program number to be entered

When the system is waiting for a program number to be entered, no edit operation can be performed.

Restrictions

• Number of digits for program number

If a program number is specified by 5 or more digits, a format error is generated.
Alarm

<table>
<thead>
<tr>
<th>Alarm No.</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>Memory became insufficient while copying or inserting a program. Copy or insertion is terminated.</td>
</tr>
<tr>
<td>101</td>
<td>The power was interrupted during copying, moving, or inserting a program and memory used for editing must be cleared. When this alarm occurs, press the key while pressing function key . Only the program being edited is deleted.</td>
</tr>
</tbody>
</table>
9.6.6 Replacement of Words and Addresses

Replace one or more specified words. Replacement can be applied to all occurrences or just one occurrence of specified words or addresses in the program.

Procedure for change of words or addresses

1. Perform steps 1 to 5 in subsection 9.6.1.

2. Press soft key [CHANGE].

3. Enter the word or address to be replaced.

4. Press soft key [BEFORE].

5. Enter the new word or address.

6. Press soft key [AFTER].

7. Press soft key [EXEC] to replace all the specified words or addresses after the cursor.
 Press soft key [1–EXEC] to search for and replace the first occurrence of the specified word or address after the cursor.
 Press soft key [SKIP] to only search for the first occurrence of the specified word or address after the cursor.

EXAMPLES

- **Replace X100 with Z200**

 ![Example 1]

- **Replace X100Z200 with X30**

 ![Example 2]

- **Replace IF with WHILE**

 ![Example 3]

- **Replace X with ,C10**

 ![Example 4]

Explanation

The following custom macro words are replaceable:

- IF, WHILE, GOTO, END, DO, BPRNT, DPRNT, POPEN, PCLOS

The abbreviations of custom macro words can be specified.

When abbreviations are used, however, the screen displays the abbreviations as they are key input, even after soft key [BEFORE] and [AFTER] are pressed.
Restrictions

- **The number of characters for replacement**
 Up to 15 characters can be specified for words before or after replacement. (Sixteen or more characters cannot be specified.)

- **The characters for replacement**
 Words before or after replacement must start with a character representing an address. (A format error occurs.)
9.7 EDITING OF CUSTOM MACROS

Unlike ordinary programs, custom macro programs are modified, inserted, or deleted based on editing units.
Custom macro words can be entered in abbreviated form.
Comments can be entered in a program.
Refer to the section 10.1 for the comments of a program.

Explanations

• Editing unit

When editing a custom macro already entered, the user can move the cursor to each editing unit that starts with any of the following characters and symbols:
(a) Address
(b) # located at the start of the left side of a substitution statement
(c) /, (=, and ;
(d) First character of IF, WHILE, GOTO, END, DO, POPEN, BPRNT, DPRNT and PCLOS

On the CRT screen, a blank is placed before each of the above characters and symbols.

(Example) Head positions where the cursor is placed

\[\text{N001 X=#100} \]
\[\#1=123 \]
\[\text{N002 X=#12/#3} \]
\[\text{N003 X=SQRT[#3/3*([#4+1])]} \]
\[\text{N004 X=#2 Z=#1} \]
\[\text{N005 #5=1+2/#10} \]
\[\text{IF[#1NE0] GOTO10} \]
\[\text{WHILE[#2LE5] DO1} \]
\[\#200+#2=2<10 \]
\[\#2=#2+1 \]
\[\text{END1} \]

• Abbreviations of custom macro word

When a custom macro word is altered or inserted, the first two characters or more can replace the entire word.

Namely,

WHILE → WH GOTO → GO XOR → XO AND → AN
SIN → SI ASIN → AS COS → CO ACOS → AC
TAN → TA ATAN → AT SQRT → SQ ABS → AB
BCD → BC BIN → BI FIX → FI FUP → FU
ROUND → RO END → EN POPEN → PO BPRNT → BP
DPRNT → DP PCLOS → PC EXP → EX THEN → TH

(Example) Keying in

WH [AB [#2] LE RO [#3]]
has the same effect as
WHILE [ABS [#2] LE ROUND [#3]]
The program is also displayed in this way.
9.8 BACKGROUND EDITING

Editing a program while executing another program is called background editing. The method of editing is the same as for ordinary editing (foreground editing).

A program edited in the background should be registered in foreground program memory by performing the following operation:

During background editing, all programs cannot be deleted at once.

Procedure for background editing

1. Enter EDIT or MEMORY mode. Memory mode is allowed even while the program is being executed.

2. Press function key `PROG`.

3. Press soft key `[OPRT]`, then press soft key `[BG–EDT]`. The background editing screen is displayed (PROGRAM (BG–EDIT) is displayed at the top left of the screen).

4. Edit a program on the background editing screen in the same way as for ordinary program editing.

5. After editing is completed, press soft key `[OPRT]`, then press soft key `[BG–EDT]`. The edited program is registered in foreground program memory.

Explanation

- **Alarms during background editing**

Alarms that may occur during background editing do not affect foreground operation. Conversely, alarms that may occur during foreground operation do not affect background editing. In background editing, if an attempt is made to edit a program selected for foreground operation, a BP/S alarm (No. 140) is raised. On the other hand, if an attempt is made to select a program subjected to background editing during foreground operation (by means of subprogram calling or program number search operation using an external signal), a P/S alarm (Nos. 059, 078) is raised in foreground operation. As with foreground program editing, P/S alarms occur in background editing. However, to distinguish these alarms from foreground alarms, BP/S is displayed in the data input line on the background editing screen.
9.9
PASSWORD FUNCTION

The password function (bit 4 (NE9) of parameter No. 3202) can be locked using parameter No. 3210 (PASSWD) and parameter No. 3211 (KEYWD) to protect program Nos. O9000 to O9999. In the locked state, parameter NE9 cannot be set to 0. In this state, program Nos. O9000 to O9999 cannot be modified unless the correct keyword is set. A locked state means that the value set in the parameter PASSWD differs from the value set in the parameter KEYWD. The values set in these parameters are not displayed. The locked state is released when the value already set in the parameter PASSWD is also set in parameter KEYWD. When 0 is displayed in parameter PASSWD, parameter PASSWD is not set.

Procedure for locking and unlocking

Locking

1. Set the MDI mode.
2. Enable parameter writing. At this time, P/S alarm No. 100 is issued on the CNC.
3. Set parameter No. 3210 (PASSWD). At this time, the locked state is set.
4. Disable parameter writing.
5. Press the [RESET] key to release the alarm state.

Unlocking

1. Set the MDI mode.
2. Enable parameter writing. At this time, P/S alarm No. 100 is issued on the CNC.
3. In parameter No. 3211 (KEYWD), set the same value as set in parameter No. 3210 (PASSWD) for locking. At this time, the locked state is released.
4. Set bit 4 (NE9) of parameter No. 3202 to 0.
5. Disable parameter writing.
6. Press the [RESET] key to release the alarm state.
7. Subprograms from program Nos. 9000 to 9999 can now be edited.
9. EDITING PROGRAMS

Explanations

- **Setting parameter PASSWD**
 The locked state is set when a value is set in the parameter PASSWD. However, note that parameter PASSWD can be set only when the locked state is not set (when PASSWD = 0, or PASSWD = KEYWD). If an attempt is made to set parameter PASSWD in other cases, a warning is given to indicate that writing is disabled. When the locked state is set (when PASSWD = 0 and PASSWD = KEYWD), parameter NE9 is automatically set to 1. If an attempt is made to set NE9 to 0, a warning is given to indicate that writing is disabled.

- **Changing parameter PASSWD**
 Parameter PASSWD can be changed when the locked state is released (when PASSWD = 0, or PASSWD = KEYWD). After step 3 in the procedure for unlocking, a new value can be set in the parameter PASSWD. From that time on, this new value must be set in parameter KEYWD to release the locked state.

- **Setting 0 in parameter PASSWD**
 When 0 is set in the parameter PASSWD, the number 0 is displayed, and the password function is disabled. In other words, the password function can be disabled by either not setting parameter PASSWD at all, or by setting 0 in parameter PASSWD after step 3 of the procedure for unlocking. To ensure that the locked state is not entered, care must be taken not to set a value other than 0 in parameter PASSWD.

- **Re–locking**
 After the locked state has been released, it can be set again by setting a different value in parameter PASSWD, or by turning the power to the NC off then on again to reset parameter KEYWD.

CAUTION

Once the locked state is set, parameter NE9 cannot be set to 0 and parameter PASSWD cannot be changed until the locked state is released or the memory all–clear operation is performed. Special care must be taken in setting parameter PASSWD.
Programs can be created using any of the following methods:

- MDI keyboard
- PROGRAMMING IN TEACH IN MODE
- AUTOMATIC PROGRAM PREPARATION DEVICE (FANUC SYSTEM P)

This chapter describes creating programs using the MDI panel, TEACH IN mode, and conversational programming with graphic function. This chapter also describes the automatic insertion of sequence numbers.
10.1 CREATING PROGRAMS USING THE MDI PANEL

Programs can be created in the EDIT mode using the program editing functions described in Chapter III–9.

Procedure for Creating Programs Using the MDI Panel

Procedure

1. Enter the EDIT mode.

2. Press the PROG key.

3. Press address key O and enter the program number.

4. Press the INSERT key.

5. Create a program using the program editing functions described in Chapter 9.

Explanation

- **Comments in a program**

 Comments can be written in a program using the control in/out codes.

 Example) O0001 (FANUC SERIES 16) ;
 M08 (COOLANT ON) ;

 - When the INSERT key is pressed after the control–out code “(”, comments, and control–in code “)” have been typed, the typed comments are registered.

 - When the INSERT key is pressed midway through comments, to enter the rest of comments later, the data typed before the INSERT key is pressed may not be correctly registered (not entered, modified, or lost) because the data is subject to an entry check which is performed in normal editing.

 Note the following to enter a comment:

 - Control–in code “)” cannot be registered by itself.

 - Comments entered after the INSERT key is pressed must not begin with a number, space, or address O.

 - If an abbreviation for a macro is entered, the abbreviation is converted into a macro word and registered (see Section 9.7).

 - Address O and subsequent numbers, or a space can be entered but are omitted when registered.
10.2 AUTOMATIC INSERTION OF SEQUENCE NUMBERS

Sequence numbers can be automatically inserted in each block when a program is created using the MDI keys in the EDIT mode. Set the increment for sequence numbers in parameter 3216.

Procedure for automatic insertion of sequence numbers

Procedure

1. Set 1 for SEQUENCE NO. (see subsection III–11.4.3).
2. Enter the EDIT mode.
3. Press PROG to display the program screen.
4. Search for or register the number of a program to be edited and move the cursor to the EOB (;) of the block after which automatic insertion of sequence numbers is started. When a program number is registered and an EOB (;) is entered with the INSERT key, sequence numbers are automatically inserted starting with 0. Change the initial value, if required, according to step 10, then skip to step 7.
5. Press address key N and enter the initial value of N.
6. Press INSERT key.
7. Enter each word of a block.
8. Press EOB key.
9 Press \(\text{INSERT} \). The EOB is registered in memory and sequence numbers are automatically inserted. For example, if the initial value of \(N \) is 10 and the parameter for the increment is set to 2, \(N12 \) inserted and displayed below the line where a new block is specified.

```
PROGRAM   O0040  N00012
O0040 :
N10 G92 X0 Y0 Z0 ;
N12
%
```

> EDIT * * * * * 13:18:08

10

- In the example above, if \(N12 \) is not necessary in the next block, pressing the \(\text{DELETE} \) key after \(N12 \) is displayed deletes \(N12 \).

- To insert \(N100 \) in the next block instead of \(N12 \), enter \(N100 \) and press \(\text{ALTER} \) after \(N12 \) is displayed. \(N100 \) is registered and initial value is changed to 100.
When the playback option is selected, the TEACH IN JOG mode and TEACH IN HANDLE mode are added. In these modes, a machine position along the X, Z, and Y axes obtained by manual operation is stored in memory as a program position to create a program. The words other than X, Z, and Y, which include O, N, G, R, F, C, M, S, T, P, Q, and EOB, can be stored in memory in the same way as in EDIT mode.

Procedure for Creating Programs in TEACH IN Mode

The procedure described below can be used to store a machine position along the X, Z, and Y axes.

1. Select the TEACH IN JOG mode or TEACH IN HANDLE mode.
2. Move the tool to the desired position with jog or handle.
3. Press the PROG key to display the program screen. Search for or register the number of a program to be edited and move the cursor to the position where the machine position along each axis is to be registered (inserted).
4. Key in address X.
5. Press the INSERT key. Then a machine position along the X axis is stored in memory.
 (Example) X10.521 Absolute position (for mm input)
 X10521 Data stored in memory
6. Similarly, key in Z, then press the INSERT key. Then a machine position along the Z axis is stored in memory. Further, key in Y, then press the INSERT key. Then a machine position along the Y axis is stored in memory.

All coordinates stored using this method are absolute coordinates.
10. CREATING PROGRAMS

OPERATION

Examples

1 Set the setting data SEQUENCE NO. to 1 (on). (The incremental value parameter (No. 3212) is assumed to be “1”.)

2 Select the **TEACH IN HANDLE** mode.

3 Make positioning at position P0 by the manual pulse generator.

4 Select the program screen.

5 Enter program number O1234 as follows:

 ![Example Diagram]

 This operation registers program number O1234 in memory.

 Next, press the following keys:

 ![Example Keys]

 An EOB (;) is entered after program number O1234. Because no number is specified after N, sequence numbers are automatically inserted for N0 and the first block (N1) is registered in memory.

6 Enter the P0 machine position for data of the first block as follows:

 ![Example Keys]

 This operation registers G50 X100000 Z200000 ; in memory. The automatic sequence number insertion function registers N2 of the second block in memory.

7 Position the tool at P1 with the manual pulse generator.

8 Enter the P1 machine position for data of the second block as follows:

 ![Example Keys]

 This operation registers G00 X14784 Z8736 ; in memory. The automatic sequence number insertion function registers N3 of the third block in memory.

9 Position the tool at P2 with the manual pulse generator.
10 Enter the P2 machine position for data of the third block as follows:

\[
\begin{align*}
G & \quad 0 \quad 1 \quad \text{INSERT} \quad Z \quad \text{INSERT} \quad F \quad 3 \quad 0 \quad 0 \\
\text{INSERT} \quad \text{EOB} \quad \text{INSERT}
\end{align*}
\]

This operation registers G01 Z103480 F300; in memory. The automatic sequence number insertion function registers N4 of the fourth block in memory.

11 Register M02; in memory as follows:

\[
\begin{align*}
M & \quad 0 \quad 2 \quad \text{INSERT} \quad \text{EOB} \quad \text{INSERT} \\
\end{align*}
\]

N5 indicating the fifth block is stored in memory using the automatic sequence number insertion function. Press the DELETE key to delete it.

This completes the registration of the sample program.

Explanations

- **Checking contents of the memory**
 The contents of memory can be checked in the TEACH IN mode by using the same procedure as in EDIT mode.

```
PROGRAM O1234 N00004

(RELATIVE) (ABSOLUTE)
U  -85.216 X  14.784
W  -191.264 Z  8.736

O1234 ;
N1 G50 X100000 Y0 Z20000 ;
N2 G00 X14784 Z8736 ;
N3 G01 Z103480 F300 ;
N4 M02 
%

> 
THND  * * * *  14 : 17 : 27

(PGRM) ( LIB ) ( ) ( ) ( ORPT )
```

- **Registering a position with compensation**
 When a value is keyed in after keying in address \(X \), \(Z \), or \(Y \), then the INSERT key is pressed, the value keyed in for a machine position is added for registration. This operation is useful to correct a machine position by key–in operation.

- **Registering commands other than position commands**
 Commands to be entered before and after a machine position must be entered before and after the machine position is registered, by using the same operation as program editing in EDIT mode.
To operate a CNC machine tool, various data must be set on the MDI for the CNC. The operator can monitor the state of operation with data displayed during operation. This chapter describes how to display and set data for each function.

The screen transition for when each function key on the MDI panel is pressed is shown below. The subsections referenced for each screen are also shown. See the appropriate subsection for details of each screen and the setting procedure on the screen. See other chapters for screens not described in this chapter.

See Chapter III–7 for the screen that appears when function key \texttt{MESSAGE} is pressed. See Chapter III–12 for the screen that appears when function key \texttt{GRAPH} is pressed. See Chapter III–13 for the screen that appears when function key \texttt{HELP} is pressed. In general, function key \texttt{CUSTOM} is prepared by the machine tool builder and used for macros. Refer to the manual issued by the machine tool builder for the screen that appears when function key \texttt{CUSTOM} is pressed.

The machine may have a data protection key to protect part programs, tool compensation values, setting data, and custom macro variables. Refer to the manual issued by the machine tool builder for where the data protection key is located and how to use it.
POS

Position display of work coordinate system ⇒See III-11.1.1.
Position displays relative coordinate system ⇒See III-11.1.2.
Total position display of each coordinate system ⇒See III-11.1.3.
Manual handle interruption ⇒See III-4.6.

Display of part count and run time ⇒See III-11.1.6.
Display of actual speed ⇒See III-11.1.5.
Setting of relative coordinate values ⇒See III-11.1.2.

MONI

Display of operating monitor ⇒See III-11.1.7.
Screen transition triggered by the function key in the MEMORY or MDI mode

* : Displayed in MDI mode

Program screen

- MDI
- MEM
- [MDI] *
- PRGRM
- [CHECK]
- [CURRNT]
- [NEXT]
- (OPRT)
- [ABS]
- [REL]
- [MDI] *
- Command for MDI operation
 (Displayed in the MDI mode)

Program screen

- MEM
- [RSTR]
- [FL.SDL]
- (OPRT)
- [PRGRM]
- [DIR]
- [SCHEDUL]

Program being executed
Absolute coordinate value
Distance to go
Modal values
See III–11.2.4.

Program being executed
Relative coordinate value
Distance to go
Modal values
See III–11.2.4.

Display of program contents
See III–11.2.1.

Display of program number and sequence number
See III–11.6.1.

Display of current block and modal data
See III–11.2.2.

Display of current block and next block
See III–11.2.3.

Program restart screen
See III–4.3.

Display of file directory
See III–4.4.

Setting of schedule
See III–4.4.
11. SETTING AND DISPLAYING DATA

PROGRAM SCREEN

Screen transition triggered by the function key in the EDIT mode

- **PROG**
 - Program screen
 - **EDIT**
 - **PRGRM**
 - **LIB**
 - **(OPRT)**
 - Program editing screen ⇒ See III – 10
 - Program memory and program directory ⇒ See III – 11.3.1.

- **FLOPPY**
 - **(OPRT)**
 - [PRGRM]
 - [DIR]
 - File directory screen for floppy disks ⇒ See III – 8
OFFSET/SETTING SCREEN

Screen transition triggered by the function key

OFFSET SETTING

Tool offset value

OFFSET

Display of tool offset value
⇒ See III–11.4.1.

SETTING

Display of setting data
⇒ See III–11.4.7

WORK

Display of workpiece coordinate system
⇒ See III–11.4.10

(OPRT)

Setting of tool offset data
⇒ See III–11.4.1

Setting of direct input of tool offset value
⇒ See III–11.4.2

Setting of direct input of tool offset measured B
⇒ See III–11.4.3

Setting of counter input of offset value
⇒ See III–11.4.4

Tool offset value

MACRO

Display of macro variables
⇒ See III–11.4.13

OPR

Setting macro variables
⇒ See III–11.4.12

TOOLLF

Displaying software operator's panel
⇒ See III–11.4.13

(OPRT)

Displaying tool life management data
⇒ See III–11.4.14

Displaying tool life counter clearing executing data
⇒ See III–11.4.14

1° To next page
Tool offset value

- OFST.2
- W.SHFT
- BARRIER
- (OPRT)

Display of Y axis offset value
⇒ See III–11.4.6.

Display of work coordinate system value
⇒ See III–11.4.5

Chuck tail stack barrier
⇒ See III–6.4

Setting of Y axis offset data
⇒ See III–11.4.6.

Setting of work coordinate system shift value
⇒ See III–11.4.5

Setting of workpiece coordinate shift value by direct input function B for tool offset measured 2.
⇒ See III–11.4.3.

Tool offset value

- OFST. B
- (OPRT)

Display of B axis offset value
⇒ See III–11.4.15.

Setting of B axis offset data
⇒ See III–11.4.15.
Screen transition triggered by the function key

Parameter screen

Display of parameter screen
⇒ see III–11.5.1

Display of diagnosis screen
⇒ See III–7.3

Setting of parameter
⇒ see III–11.5.1

Parameter screen

Display of pitch error data
⇒ See III–11.5.2

Setting of pitch error data
⇒ See III–11.5.2
The table below lists the data set on each screen.

Table 11 Setting screens and data on them

<table>
<thead>
<tr>
<th>No.</th>
<th>Setting screen</th>
<th>Contents of setting</th>
<th>Reference item</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tool offset value</td>
<td>Tool offset value</td>
<td>Subsec. 11.4.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tool nose radius compensation value</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Direct input of tool offset value</td>
<td>Subsec. 11.4.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Direct input of tool offset value measured B</td>
<td>Subsec. 11.4.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Counter input of offset value</td>
<td>Subsec. 11.4.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Y axis offset</td>
<td>Subsec. 11.4.6</td>
</tr>
<tr>
<td>2</td>
<td>Workpiece coordinate system setting</td>
<td>Workpiece coordinate system shift value</td>
<td>Subsec. 11.4.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Workpiece origin offset value</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Setting data (handy)</td>
<td>Parameter write</td>
<td>Subsec. 11.4.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TV check</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Punch code (EIA/ISO)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Input unit (mm/inch)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>I/O channel</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Automatic insert of Sequence No.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conversion of tape format (F15)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sequence number comparison and stop</td>
<td>Subsec. 11.4.8</td>
</tr>
<tr>
<td>4</td>
<td>Setting data (mirror image)</td>
<td>Mirror image</td>
<td>Subsec. 11.4.7</td>
</tr>
<tr>
<td>5</td>
<td>Setting data (timer)</td>
<td>Parts required</td>
<td>Subsec. 11.4.9</td>
</tr>
<tr>
<td>6</td>
<td>Macro variables</td>
<td>Custom macro common variables (#100 to #149) or (#100 to #199)</td>
<td>Subsec. 11.4.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(#500 to #531) or (#500 to #599)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Parameter</td>
<td>Parameter</td>
<td>Subsec. 11.5.1</td>
</tr>
<tr>
<td>8</td>
<td>Pitch error</td>
<td>Pitch error compensation data</td>
<td>Subsec. 11.5.2</td>
</tr>
<tr>
<td>9</td>
<td>software operator's panel</td>
<td>Mode selection</td>
<td>Subsec. 11.4.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jog feed axis selection</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jog rapid traverse</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Axis selection for Manual pulse generator</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multiplication for manual pulse generator</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jog feedrate</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Feedrate override</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rapid traverse override</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Optional block skip</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Single block</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Machine lock</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dry run</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Protect key</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Feed hold</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Tool life data (Tool life management)</td>
<td>Life count</td>
<td>Subsec. 11.4.14</td>
</tr>
</tbody>
</table>
11. SETTING AND DISPLAYING DATA

11.1 SCREENS DISPLAYED BY FUNCTION KEY

Press function key \(\text{POS} \) to display the current position of the tool.

The following three screens are used to display the current position of the tool:
- Position display screen for the work coordinate system.
- Position display screen for the relative coordinate system.
- Overall position display screen.

The above screens can also display the feedrate, run time, and the number of parts. In addition, a floating reference position can be set on these screens.

Function key \(\text{POS} \) can also be used to display the load on the servo motor and spindle motor and the rotation speed of the spindle motor (operating monitor display).

Function key \(\text{POS} \) can also be used to display the screen for displaying the distance moved by handle interruption. See Section 4.6 for details on this screen.

11.1.1 Position Display in the Workpiece Coordinate System

Displays the current position of the tool in the workpiece coordinate system. The current position changes as the tool moves. The least input increment is used as the unit for numeric values. The title at the top of the screen indicates that absolute coordinates are used.

Display procedure for the current position screen in the workpiece coordinate system

1. Press function key \(\text{POS} \).
2. Press soft key [ABS].
3. On (7 soft keys display unit), press the [ABS] soft key one more time to display the coordinates along axes other than the six standard axes.
Explanations

- Display including compensation values

Bits 6 and 7 of parameter 3104 can be used to select whether the displayed values include tool offset value and tool nose radius compensation.

11.1.2 Position Display in the Relative Coordinate System

Displays the current position of the tool in a relative coordinate system based on the coordinates set by the operator. The current position changes as the tool moves. The increment system is used as the unit for numeric values. The title at the top of the screen indicates that relative coordinates are used.

Display procedure for the current position screen with the relative coordinate system

1. Press function key `POS`.

![Image of current position screen]

ACTUAL POSITION (RELATIVE)

<table>
<thead>
<tr>
<th>U</th>
<th>123.456</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>363.233</td>
</tr>
</tbody>
</table>

PART COUNT 5

RUN TIME 0H15M **CYCLE TIME** 0H0M38S

ACT.F 3000 **MM/M** **S** 0 **T000**

MEM STRT MTN * 09:06:35**

[ABS][REL][ALL][HNDL][OPRT]

Explanations

- Setting the relative coordinates

The current position of the tool in the relative coordinate system can be reset to 0 or preset to a specified value as follows:

Procedure to set the axis coordinate to a specified value

1. Enter an axis address (such as X or Z) on the screen for the relative coordinates. The indication for the specified axis blinks and the soft keys change as shown on the left.
2.
 - To reset the coordinate to 0, press soft key `[ORIGIN]`. The relative coordinate for the blinking axis is reset to 0.
 - To preset the coordinate to a specified value, enter the value and press soft key `[PRESET]`. The relative coordinate for the blinking axis is set to the entered value.
Procedure to reset all axes

1. Press soft key [(OPRT)].

2. Press soft key [ORIGIN].

3. Press soft key [ALLEXE].
The relative coordinates for all axes are reset to 0.

- **Display including compensation values**
 Bits 4 (DRL) and 5 (DRC) of parameter 3104 can be used to select whether the displayed values include tool offset and tool nose radius compensation.

- **Presetting by setting a coordinate system**
 Bit 3 of parameter 3104 is used to specify whether the displayed positions in the relative coordinate system are preset to the same values as in the workpiece coordinate system when a coordinate system is set by a G50 (G code system A) or a G92 (G code system B or C) command or when the manual reference position return is made.
11.1.3 Overall Position Display

Displays the following positions on a screen: Current positions of the tool in the workpiece coordinate system, relative coordinate system, and machine coordinate system, and the remaining distance. The relative coordinates can also be set on this screen. See subsection III-11.1.2 for the procedure.

Procedure for displaying overall position display screen

1. Press function key \texttt{POS}.
2. Press soft key \texttt{[ALL]}.

![Overall Position Display Screen]

Explanations

- **Coordinate display**
 The current positions of the tool in the following coordinate systems are displayed at the same time:
 - Current position in the relative coordinate system (relative coordinate)
 - Current position in the work coordinate system (absolute coordinate)
 - Current position in the machine coordinate system (machine coordinate)
 - Distance to go (distance to go)

- **Distance to go**
 The distance remaining is displayed in the MEMORY or MDI mode. The distance the tool is yet to be moved in the current block is displayed.

- **Machine coordinate system**
 The least command increment is used as the unit for values displayed in the machine coordinate system. However, the least input increment can be used by setting bit 0 (MCN) of parameter 3104.

- **Resetting relative coordinates**
 On the overall position display screen, relative coordinates can be reset to 0 or preset to specified values. The procedure is the same as that for resetting the relative coordinates described in III-11.1.2.
11.1.4 Presetting the Workpiece Coordinate System

A workpiece coordinate system shifted by an operation such as manual intervention can be preset using MDI operations to a pre-shift workpiece coordinate system. The latter coordinate system is displaced from the machine zero point by a workpiece zero point offset value. A command (G50.3) can be programmed to preset a workpiece coordinate system. (See Subsec. III–7.2.4.)

Procedure for Presetting the Workpiece Coordinate System

1. Press function key [POS].

2. Press soft key ([OPRT]).

3. When [WRK–CD] is not displayed, press the continuous menu key [].

4. Press soft key [WRK–CD].

5. Press soft key [ALLAXS] to preset all axes.

6. To preset a particular axis in step 5, enter the axis name (X, Z, ...) and 0, then press soft key [AXS–CD].

Explanations

- Operation mode

 This function can be executed when the reset state or automatic operation stop state is entered, regardless of the operation mode.

- Presetting relative coordinates

 As with absolute coordinates, bit 3 (PPD) of parameter No. 3104 is used to specify whether to preset relative coordinates (RELATIVE).
11.1.5 Actual Feedrate Display

The actual feedrate on the machine (per minute) can be displayed on a current position display screen or program check screen by setting bit 0 (DPF) of parameter 3015. On 12 soft keys display unit, the actual feedrate is always displayed.

Display procedure for the actual feedrate on the current position display screen

1. Press function key \(\text{POS} \) to display a current position display screen.

 ![Current Position Display Screen](image)

 Actual Position (Absolute)

 | X | 123.456 |
 | Z | 363.233 |

 Part Count 5

 Run Time 0H15M **Cycle Time** 0H 0M38S

 Act. F 3000 MM/M **S** 0 T0000

 MEM STRT MTN *** 09:06:35

 [ABS] [REL] [ALL] [HNDL] [OPRT]

 Actual feedrate is displayed after ACT.F.

The actual feedrate is displayed in units of millimeter/min or inch/min (depending on the specified least input increment) under the display of the current position.

Explanations

- **Actual feedrate value**

 The actual rate is calculated by the following expression:

 \[
 \text{Fact} = \sqrt{\sum_{i=1}^{n} (f_i)^2}
 \]

 where

 \(n \) : Number of axes

 \(f_i \) : Cutting feed rate in the tangential direction of each axis or rapid traverse rate

 Fact : Actual feedrate displayed

 The display unit: mm/min (metric input).

 inch/min (Inch input, Two digits below the decimal point are displayed.)

 The feedrate along the PMC axis can be omitted by setting bit 1 (PCF) of parameter 3105.
In the case of feed per revolution and thread cutting, the actual feedrate displayed is the feed per minute rather than feed per revolution.

In the case of movement of rotary axis, the speed is displayed in units of deg/min but is displayed on the screen in units of input system at that time. For example, when the rotary axis moves at 50 deg/min, the following is displayed: 0.50 INCH/M

The program check screen also displays the actual feedrate.
11.1.6 Display of Run Time and Parts Count

The run time, cycle time, and the number of machined parts are displayed on the current position display screens.

Procedure for displaying run time and parts count on the current position display screen

1. Press function key \textbf{POS} to display a current position display screen.

```
ACTUAL POSITION(RELATIVE) 01000 N00010
X 123.456
Z 363.233

PART COUNT 5
RUN TIME 0H15M CYCLE TIME 0H 0M38S
ACT.F 3000 MM/M S 0 T0000
```

MEM STRT MTN *** 09:06:35
[ABS] [REL] [ALL] [HNDL] [OPRT]

The number of machined parts (PART COUNT), run time (RUN TIME), and cycle time (CYCLE TIME) are displayed under the current position.

Explanations

- **PART COUNT**

 Indicates the number of machined parts. The number is incremented each time M02, M30, or an M code specified by parameter 6710 is executed.

- **RUN TIME**

 Indicates the total run time during automatic operation, excluding the stop and feed hold time.

- **CYCLE TIME**

 Indicates the run time of one automatic operation, excluding the stop and feed hold time. This is automatically preset to 0 when a cycle start is performed at reset state. It is preset to 0 even when power is removed.

- **Display on the other screen**

 Details of the run time and the number of machined parts are displayed on the setting screen. See subsection III–11.4.9.

- **Parameter setting**

 The number of machined parts and run time cannot be set on current position display screens. They can be set by parameters 6711, 6751, and 6752 or on the setting screen.

- **Incrementing the number of machined parts**

 Bit 0 (PCM) of parameter 6700 is used to specify whether the number of machined parts is incremented each time M02, M30, or an M code specified by parameter 6710 is executed, or only each time an M code specified by parameter 6710 is executed.
11. SETTING AND DISPLAYING DATA

11.1.7 Operating Monitor Display

The reading on the load meter can be displayed for each servo axis and the serial spindle by setting bit 5 (OPM) of parameter 3111 to 1. The reading on the speedometer can also be displayed for the serial spindle.

Procedure for displaying the operating monitor

1. Press function key \(\text{POS} \) to display a current position display screen.
2. Press the continuous-menu key \(\text{[]} \).
3. Press soft key [MONI].

```
X :    *  *  *  80%  S1 :    201%
Z :  *  *  *  *  0%     (SPEED METER RPM)
C :  *  *  *  *  *  0%  S1 :    *  *  *
     1500
PART COUNT  5
RUN TIME  0H15M  CYCLE TIME  0H 0M38S
ACT.F  3000 MM/M
MEM STRT MTN ***  09:06:35
[ MONI ] [ REL ] [ ALL ] [ HNDL ] [ OPRT ]
```

Explanations

- **Display of the servo axes**

The reading on the load meter can be displayed for up to three servo axes by setting parameters 3151 to 3158. When all these parameters are set to 0, data is displayed only for the basic axes.

- **Display of the spindle axes**

 When serial spindles are used, the reading on the load meter and speedometer can be displayed only for the main serial spindle.

- **Unit of graph**

The bar graph for the load meter shows load up to 200% (only a value is displayed for load exceeding 200%). The bar graph for the speedometer shows the ratio of the current spindle speed to the maximum spindle speed (100%).
• Load meter

The reading on the load meter depends on servo parameter 2086 and spindle parameter 4127.

• Speed meter

Although the speedometer normally indicates the speed of the spindle motor, it can also be used to indicate the speed of the spindle by setting bit 6 (OPS) of parameter 3111 to 1.

The spindle speed to be displayed during operation monitoring is calculated from the speed of the spindle motor (see the formula below). The spindle speed can therefore be displayed, during operation monitoring, even when no position coder is used. To display the correct spindle speed, however, the maximum spindle speed for each gear (spindle speed at each gear ratio when the spindle motor rotates at the maximum speed) must be set in parameters No. 3741 to 3744.

The input of the clutch and gear signals for the first serial spindle is used to determine the gear which is currently selected. Control the input of the CTH1A and CTH2A signals according to the gear selection, by referring to the table below.

(Formula for calculating the spindle speed to be displayed)

\[
\text{Spindle speed displayed during operation monitoring} = \frac{\text{Speed of spindle motor}}{\text{Maximum speed of spindle motor}} \times \text{Maximum spindle speed with the gear being used}
\]

The following table lists the correspondence between clutch and gear selection signals CTH1A and CTH2A <G070#3, #2>, used to determine the gear being used, and parameters:

<table>
<thead>
<tr>
<th>CTH1A</th>
<th>CTH2A</th>
<th>Parameter</th>
<th>Serial spindle specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>=No.3741</td>
<td>HIGH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Maximum spindle speed with gear 1)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>=No.3742</td>
<td>MEDIUM HIGH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Maximum spindle speed with gear 2)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>=No.3743</td>
<td>MEDIUM LOW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Maximum spindle speed with gear 3)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>=No.3744</td>
<td>LOW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Maximum spindle speed with gear 4)</td>
<td></td>
</tr>
</tbody>
</table>

The speed of the spindle motor and spindle can be displayed, during operation monitoring, only for the first serial spindle and the spindle switching axis for the first serial spindle. It cannot be displayed for the second spindle.

• Color of graph

If the value of a load meter exceeds 100%, the bar graph turns purple.
This section describes the screens displayed by pressing function key PROG in MEMORY or MDI mode. The first four of the following screens display the execution state for the program currently being executed in MEMORY or MDI mode and the last screen displays the command values for MDI operation in the MDI mode:

11.2.1 Program contents display screen
11.2.2 Current block display screen
11.2.3 Next block display screen
11.2.4 Program check screen
11.2.5 Program screen for MDI operation
11.2.6 Displaying the B-axis operation state

Function key PROG can also be pressed in MEMORY mode to display the program restart screen and scheduling screen. See Section III–4.3 for the program restart screen. See Section III–4.4 for the scheduling screen.
11.2.1 Program Contents Display

Displays the program currently being executed in MEMORY or MDI mode.

Procedure for displaying the program contents

1. Press function key [PROG] to display a program screen.

2. Press chapter selection soft key [PRGRM].
 The cursor is positioned at the block currently being executed.

Explanations

- **12 soft keys display unit**
 On 12 soft keys display unit, the contents of the program are displayed on the right half of the screen or on the entire screen (switched each time soft key [PRGRM] is pressed).
11.2.2 Current Block Display Screen

Displays the block currently being executed and modal data in the MEMORY or MDI mode.

Procedure for displaying the current block display screen

1. Press function key [PROG].
2. Press chapter selection soft key [CURRNT].
 The block currently being executed and modal data are displayed.
 The screen displays up to 22 modal G codes and up to 11 G codes specified in the current block.

PROGRAM O2000 N00130

<table>
<thead>
<tr>
<th>(CURRT)</th>
<th>(MODAL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G01 X 100.500 G18 G00 F</td>
<td></td>
</tr>
<tr>
<td>·F 50.000 G50.2G97 G13.1069</td>
<td></td>
</tr>
<tr>
<td>G99 G21 T</td>
<td></td>
</tr>
<tr>
<td>G40 S G25</td>
<td></td>
</tr>
<tr>
<td>G22 G80</td>
<td></td>
</tr>
<tr>
<td>G67 SACT 0</td>
<td></td>
</tr>
<tr>
<td>> _</td>
<td>S 0 T0000</td>
</tr>
<tr>
<td>MEM STRT *** 16:05:59</td>
<td></td>
</tr>
</tbody>
</table>

Explanations

- **12 soft keys display unit**
 The current block display screen is not provided for 12 soft keys display unit. Press soft key [PRGRM] to display the contents of the program on the right half of the screen. The block currently being executed is indicated by the cursor. Modal data is displayed on the left half of the screen.
 The screen displays up to 18 modal G codes.
11.2.3 Next Block Display Screen

Displays the block currently being executed and the block to be executed next in the MEMORY or MDI mode.

Procedure for displaying the next block display screen

1. Press function key [PROG].
2. Press chapter selection soft key [NEXT].
 The block currently being executed and the block to be executed next are displayed.
 The screen displays up to 11 G codes specified in the current block and up to 11 G codes specified in the next block.

11.2.4 Program Check Screen

Displays the program currently being executed, current position of the tool, and modal data in the MEMORY mode.

Procedure for displaying the program check screen

1. Press function key \(\text{PROG}\).
2. Press chapter selection soft key [CHECK].

The program currently being executed, current position of the tool, and modal data are displayed.

```
PROGRAM O2000 N00130
O0016
G92 G90 X100. Z50. ;
G00 X0 Z0 ;
G01 Z250. F1000 ;
(Absolute) (Dist to Go) G00 G94 G80
X 0.000 X 0.000 G17 G21 G98
Z 0.000 Z 0.000 G90 G40 G50
G22 G67
B
H M
T
D
F
S
> _
MEM *** *** ***
16:06:44
[S ABS][REL][ ][ ][ ][OPRT]
```

Explanations

- **Program display**

 The screen displays up to four blocks of the current program, starting from the block currently being executed. The block currently being executed is displayed in reverse video. During DNC operation, however, only three blocks can be displayed.

- **Current position display**

 The position in the workpiece coordinate system or relative coordinate system and the remaining distance are displayed. The absolute positions and relative positions are switched by soft keys [ABS] and [REL].

- **Modal G codes**

 Up to 12 modal G codes are displayed.

 (12 G codes for each path, on 12 soft keys display unit when two-path control is being used)

- **Displaying during automatic operation**

 During automatic operation, the actual speed, SCAT, and repeat count are displayed. The key input prompt (> _) is displayed otherwise.
The program check screen is not provided for 12 soft keys display unit. Press soft key [PRGRM] to display the contents of the program on the right half of the screen. The block currently being executed is indicated by the cursor. The current position of the tool and modal data are displayed on the left half of the screen.
Up to 18 modal G codes are displayed.
11.2.5 Program Screen for MDI Operation

Displays the program input from the MDI and modal data in the MDI mode.

Procedure for displaying the program screen for MDI operation

1. Press function key PROG.
2. Press chapter selection soft key [MDI].

The program input from the MDI and modal data are displayed.

![Program Screen]

Explanations

- **MDI operation**

 See Section II–4.2 for MDI operation.

- **Modal information**

 The modal data is displayed when bit 7 (MDL) of parameter 3107 is set to 1. Up to 16 modal G codes are displayed.

 On 12 soft keys display unit, however, the contents of the program are displayed on the right half of the screen and the modal data is displayed on the left half of the screen, regardless of this parameter.

- **Displaying during automatic operation**

 During automatic operation, the actual speed, SCAT, and repeat count are displayed. The key input prompt (>_ _) is displayed otherwise.
11.2.6
Displaying the B–axis
Operation State

Displaying the B–axis operation state

1. Press the \textit{PROG} function key.
2. Press the \textit{[CHECK]} chapter selection soft key.
3. Press the \textit{[B–DSP]} chapter selection soft key. Then, the B–axis operation state is displayed on the program check screen. The command currently being executed and the next command are displayed.

\begin{verbatim}
PROGRAM CHECK O0001 N00001
M102 ;
G00 X10. Z20. ;
G01 X20. Z30. F1000 ;
G04 P1000 ;
(Absolute) (B–axis) G00 G95 G22
X 40.000 G01(Curr) G97 G21 G80
Z 40.000 B−200.000 G90 G40 G50
Y 0.000 F 0.1500 G69 G25 G67
B−125.994 G00(Next)
B 250.000 M 102
T
F 0.1000 S
ACT.F 0 SCAT 0S 0 T0000
MEM STRT *** FIN 21:20:05
[ABS] [REL] [B.DSP] [] [(OPRT)]
\end{verbatim}
This section describes the screens displayed by pressing function key \texttt{PROG} in the EDIT mode. Function key \texttt{PROG} in the EDIT mode can display the program editing screen and the program display screen (displays memory used and a list of programs). Pressing function key \texttt{PROG} in the EDIT mode can also display the conversational graphics programming screen and the floppy file directory screen. See Chapter 9, 10 for the program editing screen and conversational graphics programming screen. See Chapter 8 for the floppy file directory screen.
11.3.1 Displaying Memory Used and a List of Programs

Displays the number of registered programs, memory used, and a list of registered programs.

Procedure for displaying memory used and a list of programs

1. Select the EDIT mode.
2. Press function key [PROG].
3. Press chapter selection soft key [LIB].

```
PROGRAM DIRECTORY  O0001 N00010

PROGRAM (NUM.) MEMORY (CHAR.)
USED:  60  3321
FREE:  2  429
O0010 00001 00003 00002 00555 00999
O0062 00004 00005 01111 00969 06666
O0021 01234 00588 00020 00040

> MDI **** *** *** 16:05:59
[ PRGRM ] [ DIR ] [ ] [ C.A.P. ] [ OPRT ]
```
Explanations

• Details of memory used

PROGRAM NO. USED

PROGRAM NO. USED: The number of the programs registered (including the subprograms)

FREE: The number of programs which can be registered additionally.

MEMORY AREA USED

MEMORY AREA USED: The capacity of the program memory in which data is registered (indicated by the number of characters).

FREE: The capacity of the program memory which can be used additionally (indicated by the number of characters).

• Program library list

Program Nos. registered are indicated.

Also, the program name can be displayed in the program table by setting parameter NAM (No. 3107#0) to 1.
• **Program name**

Always enter a program name between the control out and control in codes immediately after the program number. Up to 31 characters can be used for naming a program within the parentheses. If 31 characters are exceeded, the exceeded characters are not displayed. Only program number is displayed for the program without any program name.

\[
\begin{array}{c|c}
\text{Program number} & \text{Program name (up to 31 characters)} \\
\end{array}
\]

• **Order in which programs are displayed in the program library list**

Programs are displayed in the same order that they are registered in the program library list. However, if bit 4 (SOR) of parameter 3107 is set to 1, programs are displayed in the order of program number starting from the smallest one.

• **Order in which programs are registered**

Immediately after all programs are cleared (by turning on the power while pressing the DELETE key), each program is registered after the last program in the list.

If some programs in the list were deleted, then a new program is registered, the new program is inserted in the empty location in the list created by the deleted programs.

Example)

When bit 4 (SOR) of parameter 3107 is 0

1. After clearing all programs, register programs O0001, O0002, O0003, O0004, and O0005 in this order. The program library list displays the programs in the following order:

 O0001, O0002, O0003, O0004, O0005

2. Delete O0002 and O0004. The program library list displays the programs in the following order:

 O0001, O0003, O0005

3. Register O0009. The program library list displays the programs in the following order:

 O0001, O0009, O0003, O0005
In addition to the normal listing of the numbers and names of CNC programs stored in memory, programs can be listed in units of groups, according to the product to be machined, for example.

To assign CNC programs to the same group, assign names to those programs, beginning each name with the same character string.

By searching through the program names for a specified character string, the program numbers and names of all the programs having names including that string are listed.

Procedure for Displaying a Program List for a Specified Group

Procedure

1. Enter EDIT or background editing mode.
2. Press the **PROG** function key.
3. Press the **PROG** function key or **[DIR]** soft key to display the program list.
4. Press the **[(OPRT)]** operation soft key.
5. Press the **[GROUP]** operation soft key.
6. Press the **[NAME]** operation soft key.
7. Enter the character string corresponding to the group for which a search is to be made, using the MDI keys. No restrictions are imposed on the length of a program name. Note, however, that search is made based on only the first 32 characters.

Example: To search for those CNC programs having names that begin with character string “GEAR–1000,” enter the following:

>GEAR–1000*
8 Pressing the **[EXEC]** operation soft key displays the group–unit program list screen, listing all those programs whose name includes the specified character string.

![Program Directory](image)

When the program list consists of two or more pages, the pages can be changed by using a page key.

Explanations

- **and ?**

In the above example, the asterisk (*) must not be omitted. The asterisk indicates an arbitrary character string (wild card specification).

“GEAR–1000*” indicates that the first nine characters of the target program names must be “GEAR–1000,” followed by an arbitrary character string. If only “GEAR–1000” is entered, a search is made only for those CNC programs having the nine–character name “GEAR–1000.”

A question mark (?) can be used to specify a single arbitrary character. For example, entering “**???–1000**” enables a search to be made for programs having names which start with four arbitrary characters, followed by “–1000”.

[Example of using wild cards]

(Entered character string) (Group for which the search will be made)

(a) “*” CNC programs having any name
(b) “*ABC” CNC programs having names which end with “ABC”
(c) “ABC*” CNC programs having names which start with “ABC”
(d) “*ABC*” CNC programs having names which include “ABC”
(e) “?A?C” CNC programs having four-character names, the second and fourth characters of which are A and C, respectively
(f) “??A?C” CNC programs having five-character names, the third and fifth characters of which are A and C, respectively
(g) “123*456” CNC programs having names which start with “123” and which end with “456”

• When the specified character string cannot be found

If no program is located as a result of a search for an entered character string, warning message “DATA NOT FOUND” is displayed on the program list screen.

• Holding the group for which a search is made

A group–unit program list, generated by a search, is held until the power is turned off or until another search is performed.

• Group for which previous search was made

After changing the screen from the group–unit program list to another screen, pressing the [PR–GRP] operation soft key (displayed in step 6) redisplay the group–unit program list screen, on which the program names for the previously searched group are listed. Using this soft key eliminates the need to enter the relevant character string again to redisplay the search results after changing the screen.

Examples

Assume that the main programs and subprograms for machining gear part number 1000 all have names which include character string “GEAR–1000.” The numbers and names of those programs can be listed by searching through the names of all CNC programs for character string “GEAR–1000.” This function facilitates the management of the CNC programs stored in large–capacity memory.
Press function key ➔ to display or set tool compensation values and other data. This section describes how to display or set the following data:

1. Tool offset value
2. Settings
3. Run time and part count
4. Workpiece origin offset value or workpiece coordinate system shift value
5. Custom macro common variables
6. Software operator’s panel
7. Tool life management data

This section also describes following functions:
- Direct input of tool offset value
- Direct input of tool offset value measured B
- Counter input of offset value
- Direct input of workpiece coordinate system shift
- Y axis offset
- Sequence number comparison and stop function

The following functions depend on the specifications of the machine tool builder. See the manual issued by the machine tool builder for details.
- Direct input of tool offset value
- Direct input of tool offset value measured B
- Software operator’s panel
- Tool life management data
11.4.1 Setting and Displaying the Tool Offset Value

Dedicated screens are provided for displaying and setting tool offset values and tool nose radius compensation values.

Procedure for setting and displaying the tool offset value and the tool nose radius compensation value

1. Press function key [OFFSET SETTING].

 For the two-path control, select the tool post for which tool compensation values are to be displayed with the tool post selection switch.

2. Press chapter selection soft key [OFFSET] or press [OFFSET SETTING] several times until the tool compensation screen is displayed.

 Different screens are displayed depending on whether tool geometry offset, wear offset, or neither is applied.

<table>
<thead>
<tr>
<th>OFFSET</th>
<th>X</th>
<th>Z</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>0.000</td>
<td>10.000</td>
<td>0.000</td>
<td>0</td>
</tr>
<tr>
<td>002</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0</td>
</tr>
<tr>
<td>003</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0</td>
</tr>
<tr>
<td>004</td>
<td>40.000</td>
<td>-40.000</td>
<td>0.000</td>
<td>0</td>
</tr>
<tr>
<td>005</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0</td>
</tr>
<tr>
<td>006</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0</td>
</tr>
<tr>
<td>007</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0</td>
</tr>
<tr>
<td>008</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0</td>
</tr>
</tbody>
</table>

ACTUAL POSITION (RELATIVE)

| U | 101.000 |
| W | 202.094 |

MDI ** *** *** 16:05:59**

OFFSET/GEOMETRY

<table>
<thead>
<tr>
<th>NO.</th>
<th>X</th>
<th>Z</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>G 001</td>
<td>0.000</td>
<td>1.000</td>
<td>0.000</td>
<td>0</td>
</tr>
<tr>
<td>G 002</td>
<td>1.486</td>
<td>-49.561</td>
<td>0.000</td>
<td>0</td>
</tr>
<tr>
<td>G 003</td>
<td>1.486</td>
<td>-49.561</td>
<td>0.000</td>
<td>0</td>
</tr>
<tr>
<td>G 004</td>
<td>1.486</td>
<td>0.000</td>
<td>0.000</td>
<td>0</td>
</tr>
<tr>
<td>G 005</td>
<td>1.486</td>
<td>-49.561</td>
<td>0.000</td>
<td>0</td>
</tr>
<tr>
<td>G 006</td>
<td>1.486</td>
<td>-49.561</td>
<td>0.000</td>
<td>0</td>
</tr>
<tr>
<td>G 007</td>
<td>1.486</td>
<td>-49.561</td>
<td>0.000</td>
<td>0</td>
</tr>
<tr>
<td>G 008</td>
<td>1.486</td>
<td>-49.561</td>
<td>0.000</td>
<td>0</td>
</tr>
</tbody>
</table>

ACTUAL POSITION (RELATIVE)

| U | 101.000 |
| W | 202.094 |

MDI ** *** *** 16:05:59**

Without tool geometry/wear offset

With tool geometry offset
3 Move the cursor to the compensation value to be set or changed using page keys and cursor keys, or enter the compensation number for the compensation value to be set or changed and press soft key [NO.SRH].

4 To set a compensation value, enter a value and press soft key [INPUT]. To change the compensation value, enter a value to add to the current value (a negative value to reduce the current value) and press soft key [+INPUT]. Or, enter a new value and press soft key [INPUT].

TIP is the number of the virtual tool tip (see Programming).

With tool wear offset

A decimal point can be used when entering a compensation value.

An external input/output device can be used to input or output a cutter compensation value. See Chapter III–8.

Tool length compensation values can be set using the following functions described in subsequent subsections: direct input of tool offset value, direct–input function B for tool offset measured, and counter input of offset value.

Explanations

- Decimal point input

- Other method

- Tool offset memory

16 groups are provided for tool compensation. The number of groups can be optionally extended to 32, 64. For the two–path control, the above number of groups can be used for each tool post. Tool geometry compensation or wear compensation can be selected for each group.
In some cases, tool wear compensation or tool geometry compensation values cannot be input because of the settings in bits 0 (WOF) and 1 (GOF) of parameter 3290. The input of tool compensation values from the MDI can be inhibited for a specified range of offset numbers. The first offset number for which the input of a value is inhibited is set in parameter No. 3294. The number of offset numbers, starting from the specified first number, for which the input of a value is inhibited is set in parameter No. 3295.

Consecutive input values are set as follows:

1) When values are input for offset numbers, starting from one for which input is not inhibited to one for which input is inhibited, a warning is issued and values are set only for those offset numbers for which input is not inhibited.

2) When values are input for offset numbers, starting from one for which input is inhibited to one for which input is not inhibited, a warning is issued and no values are set.

The radius and TIP are not displayed if the tool tip radius compensation option is not displayed.

When offset values have been changed during automatic operation, bit 4 (LGT) and bit 6 (LWM) of parameter 5002 can be used for specifying whether new offset values become valid in the next move command or in the next T code command.

<table>
<thead>
<tr>
<th>LGT</th>
<th>LWM</th>
<th>When geometry compensation values and wear compensation values are separately specified</th>
<th>When geometry compensation values and wear compensation values are not separately specified</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Become valid in the next T code block</td>
<td>Become valid in the next move command</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Become valid in the next T code block</td>
<td>Become valid in the next T code block</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Become valid in the next T code block</td>
<td>Become valid in the next move command</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Become valid in the next move command</td>
<td>Become valid in the next move command</td>
</tr>
</tbody>
</table>
11.4.2 Direct Input of Tool Offset Value

To set the difference between the tool reference position used in programming (the nose of the standard tool, turret center, etc.) and the tool tip position of a tool actually used as an offset value.

Procedure for direct input of tool offset value

- Setting of Z axis offset value

1. Cut surface A in manual mode with an actual tool. Suppose that a workpiece coordinate system has been set.

2. Release the tool in X axis direction only, without moving Z axis and stop the spindle.

3. Measure distance β from the zero point in the workpiece coordinate system to surface A. Set this value as the measured value along the Z–axis for the desired offset number, using the following procedure:

 OFFSET/GEOMETRY O0001 N00000
 NO. X Z. R T
 G 001 0.000 1.000 0.000 0
 G 002 1.486 0.000 0.000 0
 G 003 1.486 0.000 0.000 0
 G 004 1.486 0.000 0.000 0
 G 005 1.486 0.000 0.000 0
 G 006 1.486 0.000 0.000 0
 G 007 1.486 0.000 0.000 0
 G 008 1.486 0.000 0.000 0
 ACTUAL POSITION (RELATIVE)
 U 0.000 W 0.000
 V 0.000 H 0.000

3–1. Press the function key OFFSET or the soft key OFFSET to display the tool compensation screen. If geometry compensation values and wear compensation values are separately specified, display the screen for either of them.

3–2. Move the cursor to the set offset number using cursor keys.
3–3 Press the address key \(Z \) to be set.

3–4 Key in the measured value (\(\beta \)).

3–5 Press the soft key [MESURE].

The difference between measured value \(\beta \) and the coordinate is set as the offset value.

• Setting of X axis offset value

4 Cut surface B in manual mode.

5 Release the tool in the Z-axis direction without moving the X-axis and stop the spindle.

6 Measure the diameter \(\alpha \) of surface B.

Set this value as the measured value along the X-axis for the desired offset number in the same way as when setting the value along the Z-axis.

7 Repeat above procedure the same time as the number of the necessary tools. The offset value is automatically calculated and set.

For example, in case \(\alpha = 69.0 \) when the coordinate value of surface B in the diagram above is 70.0, set 69.0 [MEASURE] at offset No.2.

In this case, 1.0 is set as the X-axis offset value to offset No.2.

Explanations

• Compensation values for a program created in diameter programming

Enter diameter values for the compensation values for axes for which diameter programming is used.

• Tool geometry offset value and tool wear offset value

If measured values are set on the tool geometry compensation screen, all compensation values become geometry compensation values and all wear compensation values are set to 0. If measured values are set on the tool wear compensation screen, the differences between the measured compensation values and the current wear compensation values become the new compensation values.

• Retracting along two axes

If a record button is provided on the machine, the tool can retract along two axes when bit 2 (PRC) of parameter 5005 is set and the record signal is used. Refer to the appropriate manual issued by the machine tool builder.
11.4.3 Direct Input of Tool Offset Measured B

The direct input function B for tool offset measured is used to set tool compensation values and workpiece coordinate system shift values.

Procedure for setting the tool offset value

Tool position offset values can be automatically set by manually moving the tool until it touches the sensor.

Refer to the appropriate manual issued by the machine tool builder for actual operation.

 By executing manual reference position return, a machine coordinate system is established.
 The tool offset value is computed on the machine coordinate system.

2. Set the offset writing mode signal GOQSM to HIGH.
 (Refer to the appropriate manual issued by the machine tool builder for actual operation.)
 The CRT display is automatically changed to the tool offset screen (geometry), and the “OFST” indicator starts blinking in the status indication area in the bottom of the screen, which informs that the offset writing mode is ready.

3. Select a tool to be measured.

4. When the cursor is not coincided with the tool offset number desired to be set, move the cursor to the desired offset number by page key and cursor key.
 Besides the cursor can also be coincided with the tool offset number desired to set automatically by the tool offset number input signals (when parameter QNI(No.5005#5)=1).
 In this case, the position of the cursor cannot be changed on the tool compensation screen using page keys or cursor keys.

5. Near the tool to the sensor by manual operation.

6. Place the tool edge to a contacting surface of the sensor by manual handle feed.
 Bring the tool edge in contact with the sensor. This causes the offset writing signals (+MIT1, -MIT1, +MIT2 or -MIT2) to input to CNC.
 The offset writing signal is set to HIGH, and the :
 - The axis is interlocked in this direction and its feeding is stopped.
 - The tool offset value extracted by the tool offset memory (tool geometry offset value) which corresponds to the offset number shown by the cursor is set up.

7. For both X–axis and Z–axis, their offset value are set by the operations 5 and 6.

8. Repeat operations 3 to 7 for necessary tools.
9 Set the offset writing signal mode GOQSM to LOW. The writing mode is canceled and the blinking “OFST” indicator light goes off.

Procedure for setting the work coordinate system shift amount

Tool position offset values can be automatically set by manually moving the tool until it touches the sensor. Refer to the appropriate manual issued by the machine tool builder for actual operation.

1 The tool compensation values are then calculated based on the machine coordinates of the tool.

2 Execute manual reference position return. By executing manual reference position return, the machine coordinate system is established. The workpiece coordinate system shifting amount is computed based on the machine coordinate system of the tool.

3 Set the workpiece coordinate system shifting amount writing signal mode WOQSM to HIGH. (Refer to the appropriate manual issued by the machine tool builder for actual operation.) The CRT display is automatically switched to the workpiece shifting screen, the “WFST” indicator starts blinking at the status indicator area in the bottom of the screen, which inform that the workpiece coordinate system shifting amount writing mode is ready.

4 Select a tool to be measured.

5 Check tool offset numbers. The tool offset number corresponding to the tool required for measurement, shall be set in the parameter (No.5020) in advance. Besides the tool offset number can be set automatically by setting the tool offset number input signal (with parameter QNI(No.5005#5)=1). Refer to the appropriate manual issued by the machine tool builder for details.

6 Manually approach the tool to an end face of the workpiece.

7 Place the tool edge to the end face (sensor) of the workpiece by manual handle feed. The workpiece coordinate system shifting amount on the Z-axis is automatically set.

8 Feed the tool.

9 Set the workpiece coordinate system shifting amount writing signal mode WOQSM to LOW. The writing mode is canceled and the blinking “WSFT” indicator light goes off. (Refer to the appropriate manual issued by the machine tool builder for actual operation.)
By moving the tool until it reaches the desired reference position, the corresponding tool offset value can be set.

Procedure for counter input of offset value

1. Manually move the reference tool to the reference position.
2. Reset the relative coordinates along the axes to 0 (see subsec. III–11.1.2).
3. Move the tool for which offset values are to be set to the reference position.
4. Select the tool compensation screen. Move the cursor to the offset value to be set using cursor keys.

```
OFFSET/GEOMETRY                   O0001 N00000
NO.         X           Z.          R      T
G 001        0.000       1.000       0.000   0
G 002        1.486       -49.561     0.000   0
G 003        1.486       -49.561     0.000   0
G 004        1.486       0.000       0.000   0
G 005        1.486       -49.561     0.000   0
G 006        1.486       -49.561     0.000   0
G 007        1.486       -49.561     0.000   0
G 008        1.486       -49.561     0.000   0

ACTUAL POSITION (RELATIVE)
U     0.000              W     0.000
V     0.000              H     0.000

> X_
HND **** *** *** 16:05:59
[NO,SRH][MEASUR][INP.C.][+INPUT][INPUT]
```

5. Press address key X (or Z) and the soft key [INP.C.].

Explanations

- **Geometry offset and wear offset**

When the above operations are performed on the tool geometry compensation screen, tool geometry compensation values are input and tool wear compensation values do not change.

When the above operations are performed on the tool wear compensation screen, tool wear compensation values are input and tool geometry compensation values do not change.
11.4.5 Setting the Workpiece Coordinate System Shifting Amount

The set coordinate system can be shifted when the coordinate system which has been set by a G50 command (or G92 command for G code system B or C) or automatic coordinate system setting is different from the workpiece coordinate system assumed at programming.

Procedure for setting the workpiece coordinate system shifting amount

1. Press function key [OFFSET SETTING].

2. Press the continuous menu key several times until the screen with soft key [WK.SHFT] is displayed.

 ![Screen Display](image)

 WORK SHIFT 00001 N00000
 (SHIFT VALUE) (MEASUREMENT)
 X 0.000 X 0.000
 Z 0.000 Z 0.000

 ACTUAL POSITION (RELATIVE)
 U 0.000 W 0.000

 > MZ100.
 MDI **** *** *** 16:05:59
 [] [WK.SHFT] [] [+INPUT] [INPUT]

3. Press soft key [WK.SHFT].

4. Move the cursor using cursor keys to the axis along which the coordinate system is to be shifted.

5. Enter the shift value and press soft key [INPUT].
Explanations

- **When shift values become valid**: Shift values become valid immediately after they are set.

- **Shift values and coordinate system setting command**: Setting a command (G50 or G92) for setting a coordinate system disables the set shift values.

 Example When G50 X100.0 Z80.0; is specified, the coordinate system is set so that the current tool reference position is X = 100.0, Z = 80.0 regardless of the shift values.

- **Shift values and coordinate system setting**: If the automatic coordinate system setting is performed by manual reference position return after shift amount setting, the coordinate system is shifted instantly.

- **Diameter or radius value**: Whether the shift amount on the X axis is diameter or radius value depends on that specified in program.

Examples

When the actual position of the reference point is X = 121.0 (diameter), Z = 69.0 with respect to the workpiece origin but it should be X = 120.0, Z = 70.0, set the following shift values:

\[X=1.0, \quad Z=-1.0 \]
11.4.6 Y Axis Offset

Tool position offset values along the Y-axis can be set. Counter input of offset values is also possible. Direct input of tool offset value and direct input function B for tool offset measured are not available for the Y-axis.

Procedure for setting the tool offset value of the Y axis

1. Press function key OFFSET SETTING.
2. Press the continuous menu key several times until the screen with soft key [OFST.2] is displayed.
3. Press soft key [OFST.2].

The Y axis offset screen is displayed:

```
OFFSET                            O0001 N00000
NO.      Y
01     10.000
02     0.000
03     0.000
04     40.000
05     0.000
06     0.000
07     0.000
08     0.000
ACTUAL POSITION (RELATIVE)
U  100.000   W  100.000
>
MDI **** *** ***  16:05:59
[ OFST.2 ] [ W.SHFT ] [ ] [ ] [ (OPRT) ]
```

3–1 Press soft key [GEOM] to display the tool geometry compensation values along the Y-axis.

```
OFFSET/GEOMETRY                   O0001 N00000
NO.      Y
G 01    10.000
G 02    0.000
G 03    0.000
G 04    40.000
G 05    0.000
G 06    0.000
G 07    0.000
G 08    0.000
ACTUAL POSITION (RELATIVE)
U  100.000   W  100.000
>
MDI **** *** ***  16:05:59
[ WEAR ] [ GEOM ] [ ] [ ] [ (OPRT) ]
```
3–2 Press soft key [WEAR] to display the tool wear compensation values along the Y–axis.

<table>
<thead>
<tr>
<th>OFFSET/WEAR</th>
<th>O0001 N00000</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO.</td>
<td>Y</td>
</tr>
<tr>
<td>W 01</td>
<td>10.000</td>
</tr>
<tr>
<td>W 02</td>
<td>0.000</td>
</tr>
<tr>
<td>W 03</td>
<td>0.000</td>
</tr>
<tr>
<td>W 04</td>
<td>40.000</td>
</tr>
<tr>
<td>W 05</td>
<td>0.000</td>
</tr>
<tr>
<td>W 06</td>
<td>0.000</td>
</tr>
<tr>
<td>W 07</td>
<td>0.000</td>
</tr>
<tr>
<td>W 08</td>
<td>0.000</td>
</tr>
</tbody>
</table>

ACTUAL POSITION (RELATIVE)
U 100.000 W 100.000

>_ MDI **** *** *** 16:05:59 [WEAR] [GEOM] [] [] [(OPRT)]

4 Position the cursor at the offset number to be changed by using either of the following methods:

- Move the cursor to the offset number to be changed using page keys and cursor keys.
- Type the offset number and press soft key [NO.SRH].

5 Type the offset value.

6 Press soft key [WEAR]. The offset value is set and displayed.

<table>
<thead>
<tr>
<th>OFFSET/WEAR</th>
<th>O0001 N00000</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO.</td>
<td>Y</td>
</tr>
<tr>
<td>W 01</td>
<td>10.000</td>
</tr>
<tr>
<td>W 02</td>
<td>0.000</td>
</tr>
<tr>
<td>W 03</td>
<td>0.000</td>
</tr>
<tr>
<td>W 04</td>
<td>40.000</td>
</tr>
<tr>
<td>W 05</td>
<td>0.000</td>
</tr>
<tr>
<td>W 06</td>
<td>0.000</td>
</tr>
<tr>
<td>W 07</td>
<td>0.000</td>
</tr>
<tr>
<td>W 08</td>
<td>0.000</td>
</tr>
</tbody>
</table>

ACTUAL POSITION (RELATIVE)
U 100.000 W 100.000

>_ MDI **** *** *** 16:05:59 [NO.SRH] [MEASUR] [INF.C.] [+INPUT] [INPUT]
Procedure for counter input of the offset value

To set relative coordinates along the Y-axis as offset values:

1. Move the reference tool to the reference point.
2. Reset relative coordinate Y to 0 (see subsec. III–11.1.2).
3. Move the tool for which offset values are to be set to the reference point.
4. Move the cursor to the value for the offset number to be set, press \(Y \), then press soft key [INP.C.].

Relative coordinate Y (or V) is now set as the offset value.
11.4.7 Displaying and Entering Setting Data

Data such as the TV check flag and punch code is set on the setting data screen. On this screen, the operator can also enable/disable parameter writing, enable/disable the automatic insertion of sequence numbers in program editing, and perform settings for the sequence number comparison and stop function.

See Chapter III–10 for automatic insertion of sequence numbers.
See subsection III–11.4.8 for the sequence number comparison and stop function. This subsection describes how to set data.

Procedure for setting the setting data

1. Select the MDI mode.

2. Press function key [OFFSET SETTING].

3. Press soft key [SETTING] to display the setting data screen. This screen consists of several pages. Press page key ▲ or ▼ until the desired screen is displayed.

An example of the setting data screen is shown below.

```
SETTING (HANDY) O0001 N00000
PARAMETER WRITE = 1 (0:DISABLE 1:ENABLE)
TV CHECK = 0 (0:OFF 1:ON)
PUNCH CODE = 1 (0:EIA 1:ISO)
INPUT UNIT = 0 (0:MM 1:INCH)
I/O CHANNEL = 0 (0-3:CHANNEL NO.)
SEQUENCE NO. = 0 (0:OFF 1:ON)
TAPE FORMAT = 0 (0:NO CNV 1:F15)
SEQUENCE STOP = 0 (PROGRAM NO.)
SEQUENCE STOP = 0 (SEQUENCE NO.)
```

```
SETTING (HANDY) O0001 N00000
MIRROR IMAGE X = 0 (0:OFF 1:ON)
MIRROR IMAGE Z = 0 (0:OFF 1:ON)
```

See Chapter III–10 for automatic insertion of sequence numbers.
Move the cursor to the item to be changed by pressing cursor keys

, , , or .

Enter a new value and press soft key [INPUT].

Contents of settings

- **PARAMETER WRITE**
 Setting whether parameter writing is enabled or disabled.
 0 : Disabled
 1 : Enabled

- **TV CHECK**
 Setting to perform TV check.
 0 : No TV check
 1 : Perform TV check

- **PUNCH CODE**
 Setting code when data is output through reader puncher interface.
 0 : EIA code output
 1 : ISO code output

- **INPUT UNIT**
 Setting a program input unit, inch or metric system
 0 : Metric
 1 : Inch

- **I/O CHANNEL**
 Using channel of reader/puncher interface.
 0 : Channel 0
 1 : Channel 1
 2 : Channel 2
 3 : Channel 3

- **SEQUENCE NO.**
 Setting of whether to perform automatic insertion of the sequence number or not at program edit in the EDIT mode.
 0 : Does not perform automatic sequence number insertion.
 1 : Perform automatic sequence number insertion.

- **TAPE FORMAT**
 Setting the F15 tape format conversion.
 0 : Tape format is not converted.
 1 : Tape format is converted.
 See PROGRAMMING for the F15 tape format.

- **SEQUENCE STOP**
 Setting the sequence number with which the operation stops for the sequence number comparison and stop function and the number of the program to which the sequence number belongs

- **MIRROR IMAGE**
 Setting of mirror image ON/OFF for each axes.
 0 : Mirror image off
 1 : Mirror image on

- **Others**
 Page key or can also be pressed to display the SETTING (TIMER) screen. See subsection III–11.4.9 for this screen.
11.4.8 Sequence Number Comparison and Stop

If a block containing a specified sequence number appears in the program being executed, operation enters single block mode after the block is executed.

Procedure for sequence number comparison and stop

1. Select the MDI mode.
2. Press function key [OFFSET SETING].
3. Press chapter selection soft key [SETTING].
4. Press page key or several times until the following screen is displayed.

```
SETTING (HANDY) O0001 N00000

PARAMETER WRITE = 1 (0:DISABLE 1:ENABLE)
TV CHECK = 0 (0:OFF 1:ON)
PUNCH CODE = 1 (0:EIA 1:ISO)
INPUT UNIT = 0 (0:MM 1:INCH)
I/O CHANNEL = 0 (0-3:CHANNEL NO.)
SEQUENCE NO. = 0 (0:OFF 1:ON)
TAPE FORMAT = 0 (0:NO CNV 1:10/11)
SEQUENCE STOP = 0 (PROGRAM NO.)
SEQUENCE STOP = 0 (SEQUENCE NO.)

> MDI **** *** *** 16:05:59
[ OFFSET ][ SETING ][ WORK ][ ] [ (OPRT) ]
```
5. Enter in (PROGRAM NO.) for SEQUENCE STOP the number (1 to 9999) of the program containing the sequence number with which operation stops.
6. Enter in (SEQUENCE NO.) for SEQUENCE STOP (with five or less digits) the sequence number with which operation is stopped.
7. When automatic operation is executed, operation enters single block mode at the block containing the sequence number which has been set.
After the specified sequence number is found during the execution of the program, the sequence number set for sequence number compensation and stop is decremented by one. When the power is turned on, the setting of the sequence number is 0.

If the predetermined sequence number is found in a block in which all commands are those to be processed within the CNC control unit, the execution does not stop at that block.

Example
N1 #1=1 ;
N2 IF [#1 EQ 1] GOTO 08 ;
N3 GOTO 09 ;
N4 M98 P1000 ;
N5 M99 ;
In the example shown above, if the predetermined sequence number is found, the execution of the program does not stop.

If the predetermined sequence number is found in a block which has a canned-cycle command, the execution of the program stops after the return operation is completed.

If the predetermined sequence number appears twice or more in a program, the execution of the program stops after the block in which the predetermined sequence number is found for the first time is executed.

If the predetermined sequence number is found in a block which is to be executed repeatedly, the execution of the program stops after the block is executed specified times.
11.4.9 Displaying and Setting Run Time, Parts Count, and Time

Various run times, the total number of machined parts, number of parts required, and number of machined parts can be displayed. This data can be set by parameters or on this screen (except for the total number of machined parts and the time during which the power is on, which can be set only by parameters). This screen can also display the clock time. The time can be set on the screen.

Procedure for Displaying and Setting Run Time, Parts Count and Time

1. Select the MDI mode.
2. Press function key \[OFFSET\].
3. Press chapter selection soft key \[SETTING\].
4. Press page key \[PAGE\] several times until the following screen is displayed.

```
SETTING (TIMER)                    O0001 N00000
| PARTS TOTAL = 14                  |
| PARTS REQUIRED = 0                |
| PARTS COUNT = 23                  |
| POWER ON = 4H 31M                 |
| OPERATING TIME = 0H 0M 0S         |
| CUTTING TIME = 0H 37M 5S          |
| FREE PURPOSE = 0H 0M 0S           |
| CYCLE TIME = 0H 0M 0S             |
| DATE = 2001/07/05                 |
| TIME = 11:32:52                   |
> _                            S   0  T0000
MDI **** *** *** 16:05:59
[ OFFSET ] [SETTING][ WORK ][ ] [ (OPRT) ]
```

5. To set the number of parts required, move the cursor to PARTS REQUIRED and enter the number of parts to be machined.
6. To set the clock, move the cursor to DATE or TIME, enter a new date or time, then press soft key \[INPUT\].

Display items

- **PARTS TOTAL**

 This value is incremented by one when M02, M30, or an M code specified by parameter 6710 is executed. This value cannot be set on this screen. Set the value in parameter 6712.

- **PARTS REQUIRED**

 It is used for setting the number of machined parts required. When the “0” is set to it, there is no limitation to the number of parts. Also, its setting can be made by the parameter (NO. 6713).
• PARTS COUNT
This value is incremented by one when M02, M30, or an M code specified by parameter 6710 is executed. The value can also be set by parameter 6711. In general, this value is reset when it reaches the number of parts required. Refer to the manual issued by the machine tool builder for details.

• POWER ON
Displays the total time which the power is on. This value cannot be set on this screen but can be preset in parameter 6750.

• OPERATING TIME
Indicates the total run time during automatic operation, excluding the stop and feed hold time. This value can be preset in parameter 6751 or 6752.

• CUTTING TIME
Displays the total time taken by cutting that involves cutting feed such as linear interpolation (G01) and circular interpolation (G02 or G03). This value can be preset in parameter 6753 or 6754.

• FREE PURPOSE
This value can be used, for example, as the total time during which coolant flows. Refer to the manual issued by the machine tool builder for details.

• CYCLE TIME
Indicates the run time of one automatic operation, excluding the stop and feed hold time. This is automatically preset to 0 when a cycle start is performed at reset state. It is preset to 0 even when power is removed.

• DATA and TIME
Displays the current date and time. The date and time can be set on this screen.

Explanations

• Usage
When the command of M02 or M30 is executed, the total number of machined parts and the number of machined parts are incremented by one. Therefore, create the program so that M02 or M30 is executed every time the processing of one part is completed. Furthermore, if an M code set to the parameter (NO. 6710) is executed, counting is made in the similar manner. Also, it is possible to disable counting even if M02 or M30 is executed (parameter PCM (No. 6700#0) is set to 1). For details, see the manual issued by machine tool builders.

Restrictions

• Run time and part count settings
Negative value cannot be set. Also, the setting of “M” and “S” of run time is valid from 0 to 59.
Negative value may not be set to the total number of machined parts.

• Time settings
Neither negative value nor the value exceeding the value in the following table can be set.

<table>
<thead>
<tr>
<th>Item</th>
<th>Maximum value</th>
<th>Item</th>
<th>Maximum value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>2085</td>
<td>Hour</td>
<td>23</td>
</tr>
<tr>
<td>Month</td>
<td>12</td>
<td>Minute</td>
<td>59</td>
</tr>
<tr>
<td>Day</td>
<td>31</td>
<td>Second</td>
<td>59</td>
</tr>
</tbody>
</table>
11.4.10 Displaying and Setting the Workpiece Origin Offset Value

Displays the workpiece origin offset for each workpiece coordinate system (G54 to G59) and external workpiece origin offset. The workpiece origin offset and external workpiece origin offset can be set on this screen.

Procedure for Displaying and Setting the Workpiece Origin Offset Value

1. Press function key [OFFSET SETING].

2. Press chapter selection soft key [WORK].
 The workpiece coordinate system setting screen is displayed.

3. The screen for displaying the workpiece origin offset values consists of two or more pages. Display a desired page in either of the following two ways:
 - Press the page up [PAGE] or page down [PAGE] key.
 - Enter the workpiece coordinate system number (0: external workpiece origin offset, 1 to 6: workpiece coordinate systems G54 to G59) and press operation selection soft key [NO.SRH].

4. Turn off the data protection key to enable writing.

5. Move the cursor to the workpiece origin offset to be changed.

6. Enter a desired value by pressing numeric keys, then press soft key [INPUT]. The entered value is specified in the workpiece origin offset value. Or, by entering a desired value with numeric keys and pressing soft key [+INPUT], the entered value can be added to the previous offset value.

7. Repeat 5 and 6 to change other offset values.

8. Turn on the data protection key to disable writing.
This function is used to compensate for the difference between the programmed workpiece coordinate system and the actual workpiece coordinate system. The measured offset for the origin of the workpiece coordinate system can be input on the screen such that the command values match the actual dimensions. Selecting the new coordinate system matches the programmed coordinate system with the actual coordinate system.

Procedure for Inputting of Measured Workpiece Origin Offsets

1. When the workpiece is shaped as shown above, cut surface A manually.
2. Move the tool along the X axis without changing the Z coordinate then stop the spindle.
3. Measure distance β between surface A and the programmed origin of the workpiece coordinate system as shown above.
4. Press function key `OFFSET`.
5 To display the workpiece origin offset setting screen, press the chapter selection soft key [WORK].

<table>
<thead>
<tr>
<th>WORK COORDINATES</th>
<th>O1234 N56789</th>
</tr>
</thead>
<tbody>
<tr>
<td>(G54)</td>
<td></td>
</tr>
<tr>
<td>NO.</td>
<td>DATA</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>00</td>
<td>X 0.000</td>
</tr>
<tr>
<td></td>
<td>(EXT) Z 0.000</td>
</tr>
<tr>
<td>01</td>
<td>X 0.000</td>
</tr>
<tr>
<td></td>
<td>(G54) Z 0.000</td>
</tr>
</tbody>
</table>

> Z100. S 0 T0000
MDI **** *** *** 16:05:59
[NO.SRH][MEASUR][] [+INPUT][INPUT]

6 Position the cursor to the workpiece origin offset value to be set.

7 Press the address key for the axis along which the offset is to be set (Z-axis in this example).

8 Enter the measured value (β) then press the [MEASUR] soft key.

9 Cut surface B manually.

10 Move the tool along the Z axis without changing the X coordinate then stop the spindle.

11 Measure the diameter of surface A (α) then enter the diameter at X.

Restrictions

- **Consecutive input**
 - Offsets for two or more axes cannot be input at the same time.

- **During program execution**
 - This function cannot be used while a program is being executed.

- **Effect from other shift value**
 - Any shift specified for the workpiece coordinate system or external offset remains effective when this function is used.
Displaying and Setting Custom Macro Common Variables

Displays common variables (#100 to #149 or #100 to #199, and #500 to #531 or #500 to #999) on the CRT. When the absolute value for a common variable exceeds 99999999, ******** is displayed. The values for variables can be set on this screen. Relative coordinates can also be set to variables.

Procedure for displaying and setting custom macro common variables

1. Press function key OFFSET SETTING.
2. Press the continuous menu key [MACRO], then press chapter selection soft key [MACRO]. The following screen is displayed:

<table>
<thead>
<tr>
<th>NO.</th>
<th>DATA</th>
<th>NO.</th>
<th>DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1000.000</td>
<td>108</td>
<td>0.000</td>
</tr>
<tr>
<td>101</td>
<td>0.000</td>
<td>109</td>
<td>40000.000</td>
</tr>
<tr>
<td>102</td>
<td>-50000.000</td>
<td>110</td>
<td>153020.00</td>
</tr>
<tr>
<td>103</td>
<td>0.000</td>
<td>111</td>
<td>0001.000</td>
</tr>
<tr>
<td>104</td>
<td>1238501.0</td>
<td>112</td>
<td>0.000</td>
</tr>
<tr>
<td>105</td>
<td>0.000</td>
<td>113</td>
<td>20000.000</td>
</tr>
<tr>
<td>106</td>
<td>0.000</td>
<td>114</td>
<td>0.000</td>
</tr>
<tr>
<td>107</td>
<td>0.000</td>
<td>115</td>
<td>0.000</td>
</tr>
</tbody>
</table>

 ACTUAL POSITION (RELATIVE)
 U0.000 W 0.000

 > _ S 0 T0000
 MDI **** *** *** 16:05:59
 [NO.SRH][INP.C.] [INPUT]

3. Move the cursor to the variable number to set using either of the following methods:
 - Enter the variable number and press soft key [NO.SRH].
 - Move the cursor to the variable number to set by pressing page keys PAGE and/or PAGE and cursor keys ↑, ↓, ←, and/or →.

4. Enter data with numeric keys and press soft key [INPUT].

5. To set a relative coordinate in a variable, press address key X or Z, then press soft key [INP.C.].

6. To set a blank in a variable, just press soft key [INPUT]. The value field for the variable becomes blank.
11.4.13 Displaying and Setting the Software Operator’s Panel

With this function, functions of the switches on the machine operator’s panel can be controlled from the MDI panel. Jog feed can be performed using numeric keys.

Procedure for displaying and setting the software operator’s panel

1. Press function key OFFSET SETTING.
2. Press the continuous menu key \(\rightarrow \) or \(\leftarrow \), then press chapter selection soft key [OPR].
3. The screen consists of several pages. Press page key \(\uparrow \) or \(\downarrow \) until the desired screen is displayed.

4. Move the cursor to the desired switch by pressing cursor key \(\uparrow \) or \(\downarrow \).
5 Push the cursor move key ← or → to match the mark ■ to an arbitrary position and set the desired condition.

6 On a screen where jog feed is enabled, pressing a desired arrow key, shown below, performs jog feed. Press the 5 key together with an arrow key to perform manual continuous rapid traverse.

\[\begin{array}{cccc}
7 & 8 & 9 \\
4 & 5 & 6 \\
1 & 2 & 6
\end{array}\]

Explanations

- **Valid operations**
 The valid operations on the software operator’s panel are shown below. Whether to use the CRT or machine operator’s panel for each group of operations can be selected by parameter 7200.
 Group1 : Mode selection
 Group2 : Selection of jog feed axis, manual continuous rapid traverse
 Group3 : Selection of manual pulse generator feed axis, selection of manual pulse magnification x1, x10, x100
 Group4 : Jog federate, federate override, rapid traverse override
 Group5 : Optional block skip, single block, machine lock, dry run
 Group6 : Protect key
 Group7 : Feed hold

- **Display**
 The groups for which the machine operator’s panel is selected by parameter 7200 are not displayed on the software operator’s panel.

- **Screens on which jog feed is valid**
 When the screen indicates other than the software operator’s panel screen and diagnostic screen, jog feed is not conducted even if the arrow key is pushed.

- **Jog feed and arrow keys**
 The feed axis and direction corresponding to the arrow keys can be set with parameters (Nos. 7210 to 7217).

- **General purpose switches**
 Eight optionally definable switches are added as an extended function of the software operator’s panel. The name of these switches can be set by parameters as character strings of max. 8 characters. For the meanings of these switches, refer to the manual issued by machine tool builder.
11.4.14 Displaying and Setting Tool Life Management Data

Tool life data can be displayed to inform the operator of the current state of tool life management. Groups which require tool changes are also displayed. The tool life counter for each group can be preset to an arbitrary value. Tool data (execution data) can be reset or cleared. To register or modify tool life management data, a program must be created and executed. See Explanations in this section for details.

Procedure for display and setting the tool life management data

1. Press function key [OFFSET SETTING].

2. Press the continuous menu key ![] to display chapter selection soft key [TOOLLF].

3. Press soft key [TOOLLF].

4. One page displays data on two groups. Pressing page key ![] or ![] successively displays data on the following groups. Up to four group Nos., for which the Tool Change signal is being issued, are displayed at the bottom of each page. An arrow shown in the figure is displayed for five or more groups, if exists.

5. To display the page containing the data for a group, enter the group number and press soft key [NO.SRH]. The cursor can be moved to an arbitrary group by pressing cursor key ![] or ![].

6. To change the value in the life counter for a group, move the cursor to the group, enter a new value (four digits), and press [INPUT]. The life counter for the group indicated by the cursor is preset to the entered value. Other data for the group is not changed.
To reset the tool data, move the cursor on the group to reset, then press the [OPRT], [CLEAR], and [EXEC] soft keys in this order. All execution data for the group indicated by the cursor is cleared together with the marks (@, #, or *).

Explanations

- **Registering tool life management data**

 The tool life management data must be executed to register it in the CNC memory.

 (1) Load the program for tool life management in the EDIT mode, as with an ordinary CNC tape. The program will be registered in the part program memory and will be made ready for display and editing.

 (2) Perform a cycle start operation in the MEM mode to run the program. The data will be stored in the tool life data area of the memory; at the same time, the already existing tool life data of all groups will be cancelled and the life counters will be cleared. Data once stored is not erased by turning the power off.

 (3) Executing a cycle start operation in the TAPE mode instead of the operation of (1), stores the program contents directly onto the tool life data area. In this case, however, display and editing cannot be done as in (1). TAPE mode is not always prepared according to the machine tool builders.
• Display contents

<table>
<thead>
<tr>
<th>TOOL LIFE DATA</th>
<th>SELECTED GROUP 000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>03000 N00060</td>
</tr>
<tr>
<td>GROUP 001</td>
<td>LIFE 0150 COUNT 0007</td>
</tr>
<tr>
<td></td>
<td>*0034 #0078 @0012 0056</td>
</tr>
<tr>
<td></td>
<td>0090 0035 0026 0061</td>
</tr>
<tr>
<td></td>
<td>0000 0000 0000 0000</td>
</tr>
<tr>
<td></td>
<td>0000 0000 0000 0000</td>
</tr>
<tr>
<td>GROUP 002</td>
<td>LIFE 1400 COUNT 0000</td>
</tr>
<tr>
<td></td>
<td>0062 0024 0044 0074</td>
</tr>
<tr>
<td></td>
<td>0000 0000 0000 0000</td>
</tr>
<tr>
<td></td>
<td>0000 0000 0000 0000</td>
</tr>
<tr>
<td></td>
<td>0000 0000 0000 0000</td>
</tr>
<tr>
<td>TO BE CHANGED</td>
<td>003 004 005 006 --></td>
</tr>
</tbody>
</table>

MEM **** *** *** 16:05:59

• The first line is the title line.
• In the second line the group number of the current command is displayed.
 When there is no group number of the current command, 0 is displayed.
• In lines 3 to 7 the tool life data of the group is displayed.
 The third line displays group number, life and the count used.
 The life count is chosen by parameter LTM (No. 6800#2) as either minutes(or hours) or number of times used.
 In lines 4 to 7, tool numbers are displayed. In this case, the tool is selected in the order, 0034 → 0078 → 0012 → 056 → 0090 ...
 The meaning of each mark before the tool numbers is:
 * : Shows the life has finished.
 # : Shows that the skip command has been accepted.
 @ : Shows that the tool is currently being used.
 The life counter counts for tool with @.
 "*" is displayed when the next command is issued by the group to which it belongs.
• Lines 8 to 12 are next group life data to the group displayed in lines 3 to 7.
• In the thirteenth line the group number when the tool change signal is being emitted is displayed.
 The group number display appears in ascending order. When it cannot be completely displayed, "-->" is displayed.
11.4.15
Setting and Displaying
B–axis Tool
Compensation

Setting and displaying B–axis tool compensation

1 Press the OFFSET function key.

2 Press the continuous menu key several times. Then, press the [OFST.B] chapter selection key.

 • When the option for tool geometry and wear compensation is not provided,

<table>
<thead>
<tr>
<th>OFFSET (B–AXIS)</th>
<th>O0200 N00000</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. DATA</td>
<td></td>
</tr>
<tr>
<td>51 -999.999</td>
<td></td>
</tr>
<tr>
<td>52 -999.999</td>
<td></td>
</tr>
<tr>
<td>53 -999.999</td>
<td></td>
</tr>
<tr>
<td>54 -999.999</td>
<td></td>
</tr>
<tr>
<td>55 -999.999</td>
<td></td>
</tr>
<tr>
<td>56 -999.999</td>
<td></td>
</tr>
<tr>
<td>57 -999.999</td>
<td></td>
</tr>
<tr>
<td>58 -999.999</td>
<td></td>
</tr>
<tr>
<td>59 -999.999</td>
<td></td>
</tr>
</tbody>
</table>

 MDI ***** *** *** 15:29:51
 [OFST.B] [[] [] [] [] []]

 • When the option for tool geometry and wear compensation is provided,

<table>
<thead>
<tr>
<th>OFFSET (B–AXIS)</th>
<th>O0200 N00000</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. (WEAR) (GEOMETRY)</td>
<td></td>
</tr>
<tr>
<td>51 -999.999 -999.999</td>
<td></td>
</tr>
<tr>
<td>52 -999.999 -999.999</td>
<td></td>
</tr>
<tr>
<td>53 -999.999 -999.999</td>
<td></td>
</tr>
<tr>
<td>54 -999.999 -999.999</td>
<td></td>
</tr>
<tr>
<td>55 -999.999 -999.999</td>
<td></td>
</tr>
<tr>
<td>56 -999.999 -999.999</td>
<td></td>
</tr>
<tr>
<td>57 -999.999 -999.999</td>
<td></td>
</tr>
<tr>
<td>58 -999.999 -999.999</td>
<td></td>
</tr>
<tr>
<td>59 -999.999 -999.999</td>
<td></td>
</tr>
</tbody>
</table>

 MDI ***** *** *** 15:29:51
 [OFST.B] [[] [] [] [] []]

3 Position the cursor to the item to be set or modified, using the cursor keys.
5. Enter the value, then press the INPUT key.

Explanations

The offset can be set to a value in the following valid data ranges.

<table>
<thead>
<tr>
<th>Offset</th>
<th>Metric input</th>
<th>Inch input</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS–B</td>
<td>–999.999 to 999.999</td>
<td>–99.9999 to 99.9999</td>
</tr>
<tr>
<td>IS–C</td>
<td>–999.9999 to 999.9999</td>
<td>–99.99999 to 99.9999</td>
</tr>
</tbody>
</table>

Special B–axis offsets are input or output together with usual offsets. When the option for tool geometry and wear compensation is provided, wear offsets and geometry offsets can be specified separately. A tool offset consists of both the specified wear offset and geometry offset. In two–path control, tool offsets can be specified for each tool post or both tool posts, depending on the setting of COF, bit 0 of parameter No. 8242.
When the CNC and machine are connected, parameters must be set to determine the specifications and functions of the machine in order to fully utilize the characteristics of the servo motor or other parts.

This chapter describes how to set parameters on the MDI panel. Parameters can also be set with external input/output devices such as the Handy File (see Chapter III–9).

In addition, pitch error compensation data used for improving the precision in positioning with the ball screw on the machine can be set or displayed by the operations under function key `system`.

See Chapter III–7 for the diagnostic screens displayed by pressing function key `system`.
11.5.1 Displaying and Setting Parameters

When the CNC and machine are connected, parameters are set to determine the specifications and functions of the machine in order to fully utilize the characteristics of the servo motor. The setting of parameters depends on the machine. Refer to the parameter list prepared by the machine tool builder. Normally, the user need not change parameter setting.

Procedure for displaying and setting parameters

1. Set 1 for PARAMETER WRITE to enable writing. See the procedure for enabling/disabling parameter writing described below.

2. Press function key [SYSTEM].

3. Press chapter selection soft key [PARAM] to display the parameter screen.

4. Move the cursor to the parameter number to be set or displayed in either of the following ways:
 - Enter the parameter number and press soft key [NO.SRH].
 - Move the cursor to the parameter number using the page keys, [PAGE] and [PAGE], and cursor keys, [↑], [↓], [←], and [→].

5. To set the parameter, enter a new value with numeric keys and press soft key [INPUT] in the MDI mode. The parameter is set to the entered value and the value is displayed.

6. Set 0 for PARAMETER WRITE to disable writing.
Procedure for enabling/displaying parameter writing

1. Select the MDI mode or enter state emergency stop.

2. Press function key OFFSET SETING.

3. Press soft key [SETTING] to display the setting screen.

```
> _                           S   0  T0000
MDI ***** *** ***      16:05:59
[ OFFSET ][ SETING ][ WORK ][ (OPRT) ]
```

- PARAMETER WRITE = 1 (0:DISABLE 1:ENABLE)
- TV CHECK = 0 (0:OFF 1:ON)
- PUNCH CODE = 1 (0:EIA 1:ISO)
- INPUT UNIT = 0 (0:MM 1:INCH)
- I/O CHANNEL = 0 (0-3:CHANNEL NO.)
- SEQUENCE NO. = 0 (0:OFF 1:ON)
- TAPE FORMAT = 0 (0:NO CNV 1:F10/11)
- SEQUENCE STOP = 0 (PROGRAM NO.)
- SEQUENCE STOP = 11 (SEQUENCE NO.)

4. Move the cursor to PARAMETER WRITE using cursor keys.

5. Press soft key [(OPRT)], then press [1: ON] to enable parameter writing.
 At this time, the CNC enters the P/S alarm state (No. 100).

6. After setting parameters, return to the setting screen. Move the cursor to PARAMETER WRITE and press soft key [(OPRT)], then press [0: OFF].

7. Depress the key to release the alarm condition. If P/S alarm No. 000 has occurred, however, turn off the power supply and then turn it on, otherwise the P/S alarm is not released.

Explanations

- Setting parameters with external input/output devices
 See Chapter 8 for setting parameters with external input/output devices such as the Handy File.

- Parameters that require turning off the power
 Some parameters are not effective until the power is turned off and on again after they are set. Setting such parameters causes alarm 000. In this case, turn off the power, then turn it on again.

- Parameter list
 Refer to the FANUC Series 21i/210i–MODEL A Parameter Manual (B–63090EN) for the parameter list.

- Setting data
 Some parameters can be set on the setting screen if the parameter list indicates “Setting entry is acceptable”. Setting 1 for PARAMETER WRITE is not necessary when three parameters are set on the setting screen.
If pitch error compensation data is specified, pitch errors of each axis can be compensated in detection unit per axis. Pitch error compensation data is set for each compensation point at the intervals specified for each axis. The origin of compensation is the reference position to which the tool is returned. The pitch error compensation data is set according to the characteristics of the machine connected to the NC. The content of this data varies according to the machine model. If it is changed, the machine accuracy is reduced.

In principle, the end user must not alter this data. Pitch error compensation data can be set with external devices such as the Handy File (see Chapter III). Compensation data can also be written directly with the MDI panel. The following parameters must be set for pitch error compensation. Set the pitch error compensation value for each pitch error compensation point number set by these parameters.

In the following example, 33 is set for the pitch error compensation point at the reference position.

<table>
<thead>
<tr>
<th>Compensation position number</th>
<th>31</th>
<th>32</th>
<th>33</th>
<th>34</th>
<th>35</th>
<th>36</th>
<th>37</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compensation value to be set</td>
<td>+3</td>
<td>-1</td>
<td>-1</td>
<td>+1</td>
<td>+2</td>
<td>-1</td>
<td>-3</td>
</tr>
</tbody>
</table>

- Number of the pitch error compensation point at the reference position (for each axis): Parameter 3620
- Number of the pitch error compensation point having the smallest value (for each axis): Parameter 3621
- Number of the pitch error compensation point having the largest value (for each axis): Parameter 3622
- Pitch error compensation magnification (for each axis): Parameter 3623
- Interval of the pitch error compensation points (for each axis): Parameter 3624
- Travel distance per revolution of pitch error compensation of the rotary axis type (for each axis): Parameter 3625
Bidirectional pitch error compensation

The bidirectional pitch error compensation function allows independent pitch error compensation in different travel directions. (When the movement is reversed, compensation is automatically carried out as in a backlash.)

To use this function, specify pitch error compensation for each travel direction, that is, separately for the positive and negative directions of a movement.

When using bidirectional pitch error compensation (setting the BDP bit (bit 0 of parameter 3605) to 1), specify the following parameters in addition to the pitch error compensation parameter.

- Number of the pitch error compensation point at the negative end (for travel in the positive direction, for each axis): Parameter 3620
- Number of the pitch error compensation point at the positive end (for travel in the positive direction, for each axis): Parameter 3621
- Number of the pitch error compensation point at the negative end (for travel in the negative direction, for each axis): Parameter 3626
- Number of the pitch error compensation point at the positive end (for travel in the negative direction, for each axis): Parameter 3627

Procedure for displaying and setting the pitch error compensation data

1. Set the following parameters:
 - Number of the pitch error compensation point at the reference position (for each axis): Parameter 3620
 - Number of the pitch error compensation point having the smallest value (for each axis): Parameter 3621
 - Number of the pitch error compensation point having the largest value (for each axis): Parameter 3622
 - Pitch error compensation magnification (for each axis): Parameter 3623
 - Interval of the pitch error compensation points (for each axis): Parameter 3624
 - Travel distance per revolution of pitch error compensation of the rotary axis type (for each axis): Parameter 3625

When using bidirectional pitch error compensation (setting the BDP bit (bit 0 of parameter 3605) to 1), specify the following parameters in addition to the pitch error compensation parameter.

- Number of the pitch error compensation point at the negative end (for travel in the positive direction, for each axis): Parameter 3620
- Number of the pitch error compensation point at the positive end (for travel in the positive direction, for each axis): Parameter 3621
- Number of the pitch error compensation point at the negative end (for travel in the negative direction, for each axis): Parameter 3626
- Number of the pitch error compensation point at the positive end (for travel in the negative direction, for each axis): Parameter 3627
2 Press function key [SYSTEM].

3 Press the continuous menu key [→], then press chapter selection soft key [PITCH].

The following screen is displayed:

<table>
<thead>
<tr>
<th>PIT-ERROR SETTING</th>
<th>0000 0 N00000</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO. DATA</td>
<td>NO. DATA</td>
</tr>
<tr>
<td>0000 0</td>
<td>0010 0</td>
</tr>
<tr>
<td>0001 0</td>
<td>0011 0</td>
</tr>
<tr>
<td>0002 0</td>
<td>0012 0</td>
</tr>
<tr>
<td>0003 0</td>
<td>0013 0</td>
</tr>
<tr>
<td>(X) 0004 0</td>
<td>0014 0</td>
</tr>
<tr>
<td>0005 0</td>
<td>0015 0</td>
</tr>
<tr>
<td>0006 0</td>
<td>0016 0</td>
</tr>
<tr>
<td>0007 0</td>
<td>0017 0</td>
</tr>
<tr>
<td>0008 0</td>
<td>0018 0</td>
</tr>
<tr>
<td>0009 0</td>
<td>0019 0</td>
</tr>
</tbody>
</table>

> MEM **** *** *** 16:05:59
[NO.SRH] [ON:1] [OFF:0] [+INPUT] [-INPUT]

4 Move the cursor to the compensation point number to be set in either of the following ways:
 • Enter the compensation point number and press the [NO.SRH] soft key.
 • Move the cursor to the compensation point number using the page keys, [↑] and [↓], and cursor keys, [←], [→].

5 Enter a value with numeric keys and press the [INPUT] soft key.
The program number, sequence number, and current CNC status are always displayed on the screen except when the power is turned on, a system alarm occurs, or the PMC screen is displayed. If data setting or the input/output operation is incorrect, the CNC does not accept the operation and displays a warning message. This section describes the display of the program number, sequence number, and status, and warning messages displayed for incorrect data setting or input/output operation.

11.6 DISPLAYING THE PROGRAM NUMBER, SEQUENCE NUMBER, AND STATUS, AND WARNING MESSAGES FOR DATA SETTING OR INPUT/OUTPUT OPERATION

11.6.1 Displaying the Program Number and Sequence Number

The program number and sequence number are displayed at the top right on the screen as shown below.

```
PROGRAM
O1000
N100  G50 X0 Z0.
N101  G00 X100. Z50. ;
N102  G01 X230. Z56. ;
N103  W-10.
N104  U-120.
N105  M02;
```

The program number and sequence number displayed depend on the screen and are given below:

On the program screen in the EDIT mode on Background edit screen:
The program No. being edited and the sequence number just prior to the cursor are indicated.

Other than above screens:
The program No. and the sequence No. executed last are indicated.

Immediately after program number search or sequence number search:
Immediately after the program No. search and sequence No. search, the program No. and the sequence No. searched are indicated.
11.6.2 Displaying the Status and Warning for Data Setting or Input/Output Operation

The current mode, automatic operation state, alarm state, and program editing state are displayed on the next to last line on the CRT screen allowing the operator to readily understand the operation condition of the system.

If data setting or the input/output operation is incorrect, the CNC does not accept the operation and a warning message is displayed on the next to last line of the CRT screen. This prevents invalid data setting and input/output errors.

Explanations

- **Description of each display**

 - **(9)** Data is out of range.
 - **(5)** (Note) Actually, 5 is displayed in the area for (3) and (4).
 - **(1)** EDIT
 - **(2)** STOP
 - **(3)** MTN
 - **(4)** FIN
 - **(6)** ALM
 - **(7)** hh:mm:ss
 - **(8)** INPUT
 - **(Display soft keys)**
 - **Note** (10) Actually, (10) is displayed at the position where (8) is now displayed.

- **(1) Current mode**
 - MDI: Manual data input, MDI operation
 - MEM: Automatic operation (Memory operation)
 - RMT: Automatic operation (DNC operation)
 - EDIT: Memory editing
 - HND: Manual handle feed
 - JOG: Jog feed
 - TJOG: TEACH IN JOG
 - THND: TEACH IN HANDLE
 - INC: Manual incremental feed
 - REF: Manual reference position return

- **(2) Automatic operation status**
 - ****: Reset (When the power is turned on or the state in which program execution has terminated and automatic operation has terminated.
 - STOP: Automatic operation stop (The state in which one block has been executed and automatic operation is stopped.)
 - HOLD: Feed hold (The state in which execution of one block has been interrupted and automatic operation is stopped.)
 - STRT: Automatic operation start–up (The state in which the system operates automatically)

- **(3) Axis moving status/dwell status**
 - MTN: Indicates that the axis is moving.
 - DWL: Indicates the dwell state.
 - ***: Indicates a state other than the above.

- **(4) State in which an auxiliary function is being executed**
 - FIN: Indicates the state in which an auxiliary function is being executed. (Waiting for the complete signal from the PMC)
 - ***: Indicates a state other than the above.

- **(5) Emergency stop or reset status**
 - EMG: Indicates emergency stop. (Blinks in reversed display.)
 - RESET: Indicates that the reset signal is being received.
11. SETTING AND DISPLAYING DATA

• (6) Alarm status
 - **ALM**: Indicates that an alarm is issued. (Blinks in reversed display.)
 - **BAY**: Indicates that the battery is low. (Blinks in reversed display.)
 - **Space**: Indicates a state other than the above.

• (7) Current time
 - **hh:mm:ss**: Hours, minutes, and seconds

• (8) Program editing status
 - **INPUT**: Indicates that data is being input.
 - **OUTPUT**: Indicates that data is being output.
 - **SRCH**: Indicates that a search is being performed.
 - **EDIT**: Indicates that another editing operation is being performed (insertion, modification, etc.)
 - **LSK**: Indicates that labels are skipped when data is input.
 - **RSTR**: Indicates that the program is being restarted
 - **Space**: Indicates that no editing operation is being performed.

• (9) Warning for data setting or input/output operation

 When invalid data is entered (wrong format, value out of range, etc.), when input is disabled (wrong mode, write disabled, etc.), or when input/output operation is incorrect (wrong mode, etc.), a warning message is displayed. In this case, the CNC does not accept the setting or input/output operation.

 The following are examples of warning messages:

Example 1)
When a parameter is entered

```
> 1
EDIT  WRONG MODE
```

(Display soft keys)

Example 2)
When a parameter is entered

```
> 999999999
MDI  TOO MANY DIGITS
```

(Display soft keys)

Example 3)
When a parameter is output to an external input/output device

```
> MEM  WRONG MODE
```

(Display soft keys)
11.7 SCREENS DISPLAYED BY FUNCTION KEY

By pressing the MESSAGE function key, data such as alarms, alarm history data, and external messages can be displayed. For information relating to alarm display, see Section III.7.1. For information relating to alarm history display, see Section III.7.2. For information relating to external message display, see the relevant manual supplied by the machine tool builder.

11.7.1 External Operator Message History Display

External operator messages can be preserved as history data. Preserved history data can be displayed on the external operator message history screen.

Procedure for external operator message history display

Procedure

1. Press the MESSAGE function key.

2. Press the continuous menu key, then press the chapter selection soft key [MSGHIS]. The screen shown below appears.

 ![MESSAGE HISTORY Screen]

 NOTE

Up to 255 characters can be specified for an external operator message. By setting MS1 and MS0 (bits 7 and 6 of parameter No. 3113), however, the number of characters that can be preserved as external operator message history data can be restricted, and the number of history data items selected.
When an external operator message number is specified, updating of the external operator message history data is started; this updating is continued until a new external operator message number is specified or deletion of the external operator message history data is specified.

To clear external operator message history data, press the [CLEAR] soft key. This clears all external operator message history data. (Set MSGCR (bit 0 of parameter No. 3113) to 1.)

Note that when MS1 and MS0 (bits 7 and 6 of parameter No. 3113), used to specify the number of external operator message history data items to be displayed, are changed, all existing external operator message history data is cleared.

Before this function can be used, the external data input function or optional external message function must be selected.
11.8 CLEARING THE SCREEN

When screen indication isn’t necessary, the life of the back light for LCD can be put off by turning off the back light. The screen can be cleared by pressing specific keys. It is also possible to specify the automatic clearing of the screen if no keys are pressed during a period specified with a parameter. But, the life of the back light may be contracted all the more when the clearing of screen and re-indication of screen are repeated beyond the necessity. This effect can be expected when a screen is cleared for more than one hour.

11.8.1 Erase CRT Screen Display

Holding down the CAN key and pressing an arbitrary function key clears the screen.

Procedure for Erase CRT Screen Display

Procedure
- **Clearing the screen**
 Hold down the CAN key and press an arbitrary function key (such as POS and PROG).
- **Restoring the screen**
 Press an arbitrary function key.
The CNC screen is automatically cleared if no keys are pressed during the period (in minutes) specified with a parameter. The screen is restored by pressing any key.

Procedure for Automatic Erase Screen Display

- **Clearing the screen**
 The CNC screen is cleared once the period (minutes) specified with parameter No. 3123 has elapsed, provided the following conditions are satisfied:

 Conditions for clearing the CNC screen
 - Parameter No. 3123 is set to other than 0.
 - None of the following keys have been pressed:
 - MDI keys
 - Soft keys
 - External input keys
 - No alarm has been issued.

- **Restoring the screen**
 The cleared CNC screen is restored once at least one of the following conditions is satisfied:

 Conditions for restoring the CNC screen
 - Any of the following keys has been pressed:
 - MDI keys
 - Soft keys
 - Externally input keys
 - An alarm has been issued.

Some machines feature a special key for restoring the screen. For an explanation of the location and use of this key, refer to the corresponding manual, supplied by the machine tool builder.

Explanations

- **Clearing the screen using [CAN] + function key**
 If parameter No. 3123 is set to 0, clearing of the screen using the [CAN] key and a function key (III–11.8.1) is disabled.

- **Specified period**
 The period specified with parameter No. 3123 is valid only for tool post 1.

- **Alarm for another path**
 The screen is not cleared if an alarm is issued for tool post 1 or 2 or the loader before the specified period elapses.

CAUTION

Pressing any key while the screen is being cleared restores the screen. In such a case, however, the function assigned to the pressed key is initiated. Do not press the [DELETE], [INSERT], or [ALTER] key to restore the screen, therefore.
The graphic function indicates how the tool moves during automatic operation or manual operation.
It is possible to draw the programmed tool path on the screen, which makes it possible to check the progress of machining, while observing the path on the screen. In addition, it is also possible to enlarge/reduce the screen. The drawing coordinates (parameter) and graphic parameters must be set before a tool path can be displayed.

Graphics display procedure

Procedure

Set the drawing coordinates with parameter No.6510 before starting drawing. See “Drawing Coordinate System” for the settings and corresponding coordinates.

 The graphic parameter screen shown below appears. (If this screen does not appear, press soft key [G.PRM].)

 ![Graphic Parameter Screen]

2. Move the cursor with the cursor keys to a parameter to set.

3. Enter data, then press the [INPUT] key.

4. Repeat steps 3 and 4 until all required parameters are specified.

5. Press soft key [GRAPH].
6 Automatic or manual operation is started and machine movement is drawn on the screen.

7 Part of a drawing on the screen can be magnified.

8 Using the cursor keys ‹›, move the zoom cursors to specify a diagonal for the new screen. Pressing the [HI / LO] soft key toggles the zoom cursor to be moved.

9 To make the original drawing disappear, press [EXEC].
10 Resume the previous operation. The part of the drawing specified with the zoom cursors will be magnified.

To display the original drawing, press the [NORMAL] soft key, then start automatic operation.

Explanation
• Setting drawing coordinate systems

Parameter No. 6510 is used to set a drawing coordinate system for using the graphic function. The relationships between setting values and drawing coordinate systems are indicated below. With two-path control, a different drawing coordinate system can be selected for each tool post.
Graphics parameter

WORK LENGTH (W), WORK DIAMETER (D)
Specify work length and work diameter. The table below lists the input unit and valid data range.

<table>
<thead>
<tr>
<th>Increment system</th>
<th>Unit (mm input)</th>
<th>Unit (inch input)</th>
<th>Valid range</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS–B</td>
<td>0.001 mm</td>
<td>0.0001 inch</td>
<td>0 to 99999999</td>
</tr>
<tr>
<td>IS–C</td>
<td>0.0001 mm</td>
<td>0.00001 inch</td>
<td></td>
</tr>
</tbody>
</table>

GRAPHIC CENTER (X, Z), SCALE (S)
A screen center coordinate and drawing scale are displayed. A scale screen center coordinate are automatically calculated so that a figure set in WORK LENGTH (a) and WORK DIAMETER (b) can be fully displayed on the screen. So, the user need not set these parameters usually.
A screen center coordinate is defined in the workpiece coordinate system. Table 12.3.2 indicates the unit and range. The unit of SCALE is 0.001%.

PROGRAM STOP (N)
Set the sequence number of an end block when part of the program is to be drawn. A value set in this parameter is automatically cancelled (cleared to 0) once a drawing is provided.

AUTO ERASE (A)
If 1 is set, the previous drawing is automatically erased when automatic operation is stated from the reset state. Then, drawing is started.

LIMIT (L)
If 1 is set, the area of stored stroke limit 1 is drawn with double–dot–and–dash lines.

NOTE
The parameter values for drawing are preserved even if power is turned off.

Executing drawing only
Since the graphic drawing is done when coordinate value is renewed during automatic operation, etc., it is necessary to start the program by automatic operation. To execute drawing without moving the machine, therefore, enter the machine lock state.
Pressing the [REVIEW] soft key on the graphic screen deletes tool paths on it. Setting the graphic parameter as AUTO ERASE (A) = 1 specifies that when automatic operation is started at reset, program execution begins after the previous drawing is erased automatically (AUTO ERASE = 1).

When necessary to display a part of a program, search the starting block to be drawn by the sequence number search, and set the sequence number of the end block to the PROGRAM STOP N= of the graphic parameter before starting the program under cycle operation mode.

The tool path is shown with a dashed line (- - - -) for rapid traverse and with a solid line (———) for cutting feed.

The displayed drawing is indicated with coordinates in a work coordinate system.

The machine zero point is indicated with mark.

Even if the screen is switched to a non-drawing screen, drawing continues. When the drawing screen is displayed again, the entire drawing appears (no parts are missing).

In case the feed rate is considerably high, drawing may not be executed correctly, decrease the speed by dry-run, etc. to execute drawing.

After a graphic parameter is changed, the [REVIEW] soft key must be pressed to initialize the graphic screen. Otherwise, the change to the graphic parameter is not reflected correctly.

The coordinate axis names are fixed to X or Z. For the two-path control, the first and second axes for tool post 1 are named X1 and Z1, respectively, and the first and second axes for tool post 2 are named X2 and Z2, respectively.

If the WORK and DIAMETER graphic parameters are not set correctly, the drawing cannot be magnified. To reduce a drawing, specify a negative value for the SCALE graphic parameter. The machine zero point is indicated with mark.
The help function displays on the screen detailed information about alarms issued in the CNC and about CNC operations. The following information is displayed.

- **Detailed information of alarms**
 When the CNC is operated incorrectly or an erroneous machining program is executed, the CNC enters the alarm state. The help screen displays detailed information about the alarm that has been issued and how to reset it. The detailed information is displayed only for a limited number of P/S alarms. These alarms are often misunderstood and are rather difficult to understand.

- **Operation method**
 If you are not sure about a CNC operation, refer to the help screen for information about each operation.

- **Parameter table**
 When setting or referring to a system parameter, if you are not sure of the number of the parameter, the help screen displays a list of parameter Nos. for each function.

Help Function Procedure

Procedure

1. Press the HELP key on the MDI. HELP (INITIAL MENU) screen is displayed.

 ![HELP (INITIAL MENU) Screen](image)

 Fig.13(a) HELP (INITIAL MENU) Screen

 The user cannot switch the screen display from the PMC screen or CUSTOM screen to the help screen. The user can return to the normal CNC screen by pressing the HELP key or another function key.
ALARM DETAIL screen

2 Press soft key [ALAM] on the HELP (INITIAL MENU) screen to display detailed information about an alarm currently being raised.

![HELP (ALARM DETAIL) Screen](image)

Note that only details of the alarm identified at the top of the screen are displayed on the screen.

If the alarms are all reset while the help screen is displayed, the alarm displayed on the ALARM DETAIL screen is deleted, indicating that no alarm is issued.

![Fig.13(c) ALARM DETAIL Screen when No Alarm is issued](image)
To get details on another alarm number, first enter the alarm number, then press soft key [SELECT]. This operation is useful for investigating alarms not currently being raised.

![Fig.13(d) How to select each ALARM DETAILS](image)

To determine an operating procedure for the CNC, press the soft key [OPR] on the HELP (INITIAL MENU) screen. The OPERATION METHOD menu screen is then displayed. (See Fig. 13 (f.).)

![Fig.13(f) OPERATION METHOD Menu Screen](image)

To select an operating procedure, enter an item No. from the keyboard then press the [SELECT] key.
Fig.13(g) How to select each OPERATION METHOD screen

When "1. PROGRAM EDIT" is selected, for example, the screen in Figure 13 (g) is displayed. On each OPERATION METHOD screen, it is possible to change the displayed page by pressing the PAGE key. The current page No. is shown at the upper right corner on the screen.

Fig.13(h) Selected OPERATION METHOD screen

To return to the OPERATION METHOD menu screen, press the RETURN MENU key to display "[OPR]" again, and then press the [OPR] key again. To directly select another OPERATION METHOD screen on the screen shown in Figure 13 (h), enter an item No. from the keyboard and press the [SELECT] key.

Fig.13(i) How to select another OPERATION METHOD screen

If you are not sure of the No. of a system parameter to be set, or to refer to a system parameter, press the [PARA] key on the HELP (INITIAL MENU) screen. A list of parameter Nos. for each function is displayed. (See Figure 13 (j).)

It is possible to change the displayed page on the parameter screen. The current page No. is shown at the upper right corner on the screen.
7 To exit from the help screen, press the HELP key or another function key.

Explanation

- Configuration of the Help Screen
SCREEN HARDCOPY

The screen hardcopy function outputs the information displayed on the CNC screen as 640*480-dot bitmap data. This function makes it possible to produce a hard copy of a still image displayed on the CNC. The created bitmap data can be displayed on a PC.

Screen Hardcopy Procedure

1. Check the parameter settings. To use the screen hardcopy function, set bit 7 of parameter 3301 to 1 and parameter 20 (I/O channel selection) to 4 (memory card I/F). Set other relative parameters (bits 0, 2, and 3 of parameter 3301) as needed. In a multipath system, set the parameters for each path.

2. Insert a memory card.

3. To start the function, set hardcopy start signal HDREQ (G67#7) to 1. Alternatively, hold down the [SHIFT] key for five seconds.

4. To end the function, press the [CAN] key. Alternatively, set hard copy stop signal HDABT (G67#6) to 1.

5. While the screen hardcopy operation is in progress, the hardcopy in progress signal (F061#3) is tied to 1. For several tens of seconds (or several seconds, for a monochrome LCD) before the hardcopy operation ends, the screen image stands still.

6. When the screen hardcopy operation is completed, the hardcopy in progress signal (F061#3) goes 0.

Supplementary explanation

While the screen hardcopy operation is in progress, the screen image keeps still. This means that the clock displayed on the screen indicates the beginning and end of the operation. When the clock stops counting seconds, the hard copy operation starts. The clock resumes counting seconds when the screen hardcopy operation ends.
NOTE
1 During the screen hardcopy operation, key input is disabled for several tens of seconds. Until the screen hardcopy operation ends, the screen image lies still. During this period, the hardcopy in progress signal (F061#3) is tied to 1. No other signal is output. Avoid turning off the power indiscriminately during that period.
2 If the [SHIFT] or [CAN] key is customized by C executor, for instance, the screen hardcopy operation may disable the [SHIFT] or [CAN] key.
3 A normal hard copy may not be produced while the screen image is moving.

Limitations
A hard copy of the following screens cannot be produced.

1 Screen of the FS–210i (CNC with personal computer function)
2 System alarm screen
3 Screen while RS–232–C is being used
4 Screen during automatic or manual operation (A hard copy can be produced in a rest of the operation.)

File name
The bitmap files created by the screen hardcopy function are named as follows, in order in which they are created after power–up:

'HDCPY000.BMP' (Name of the first hardcopy file created after power–up)
'HDCPY001.BMP' (Name of the second hardcopy file created after power–up)

NOTE
1 A screen hardcopy file produced after the file HDCPY099.BMP is output will be named as HDCPY000.BMP.
2 If a BMP file output by the screen hardcopy function has the same name as a file present on a memory card, the file on the memory card is overwritten unconditionally.
3 When the hardcopy function is carried out after power is turned off and on again, the first output file is named as HDCPY000.BMP again. If the inserted memory card has a file having the same name, the file is unconditionally overwritten. Note this when continuously producing hard copies of various screens.
The number of colors used in created bitmap data depend on the display control card, the LCD hardware, and the display mode of the CNC screen. Table 14 (a) indicates the relationships.

Table 14 (a) Colors of BMP data created by the screen hardcopy function

<table>
<thead>
<tr>
<th>LCD hardware</th>
<th>CNC screen display mode</th>
<th>Colors displayed on CNC</th>
<th>Colors used in created BMP data</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monochrome LCD</td>
<td>—</td>
<td>2 colors</td>
<td>2 colors</td>
<td>Shades of gray are not supported.</td>
</tr>
<tr>
<td>Color LCD</td>
<td>VGA–compatible mode</td>
<td>Character: 16 colors</td>
<td>When bit 0 of parameter 3301 is set to 0: 256 colors When bit 0 of parameter 3301 is set to 1: 16 colors</td>
<td>Most CNC screens use this mode. Note that colors may not be normally displayed in the 16–color mode.</td>
</tr>
<tr>
<td></td>
<td>VGA mode</td>
<td>256 colors</td>
<td>256 colors</td>
<td>A special screen can be prepared by C executor, for instance.</td>
</tr>
</tbody>
</table>

Data size

Table 14 (b) indicates the sizes of bitmap data created by the screen hardcopy function.

Table 14 (b) Sizes of bitmap data created by the screen hardcopy function

<table>
<thead>
<tr>
<th>Bitmap colors</th>
<th>File size (bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monochrome (2 colors)</td>
<td>38,462</td>
</tr>
<tr>
<td>Color (16 colors)</td>
<td>153,718</td>
</tr>
<tr>
<td>Color (256 colors)</td>
<td>308,278</td>
</tr>
</tbody>
</table>

Alarm message

If bit 2 of parameter 3301 is set to 1, an alarm message can be output when the hardcopy operation ends in failure. (P/S alarm Nos. 5212 to 5214)
IV. MAINTENANCE
1. METHOD OF REPLACING BATTERY

This chapter describes how to replace the CNC backup battery and absolute pulse coder battery. This chapter consists of the following sections:

1.1 REPLACING BATTERY FOR LCD–MOUNTED TYPE i SERIES
1.2 REPLACING THE BATTERY FOR STAND–ALONE TYPE i SERIES
1.3 BATTERY IN THE PANEL i (3 VDC)
1.4 BATTERY FOR SEPARATE ABSOLUTE PULSE CODERS (6 VDC)
1.5 BATTERY FOR ABSOLUTE PULSE CODER BUILT INTO THE MOTOR (6 VDC)

Part programs, offset data, and system parameters are stored in CMOS memory in the control unit. The power to the CMOS memory is backed up by a lithium battery mounted on the front panel of the control unit. Therefore, the above data is not lost even if the main battery fails. The backup battery is installed in the control unit prior to being shipped from the factory. This battery can provide backup for the memory contents for about a year.

When the battery voltage falls, alarm message “BAT” blinks on the LCD display and the battery alarm signal is output to the PMC. When this alarm is displayed, replace the battery as soon as possible. In general, the battery can be replaced within one or two weeks of the alarm first being issued. This, however, depends on the system configuration.

If the battery voltage subsequently drops further, backup of memory can no longer be provided. Turning on the power to the control unit in this state causes system alarm 910 (SRAM parity alarm) to be issued because the contents of memory are lost. Replace the battery, clear the entire memory, then reenter the data.

Replace the memory backup battery within a few minutes while the control unit is brought off.

The following two kinds of batteries can be used.

- Lithium battery, incorporated into the CNC control unit.
- Two alkaline dry cells (size D) in an external battery case.

NOTE
A lithium battery is installed as standard at the factory.
When a lithium battery is used
Prepare a new lithium battery (ordering code: A02B–0200–K102 (FANUC specification: A98L–0031–0012)).

1) Turn on the power to the CNC. After about 30 seconds, turn off the power.

2) Remove the old battery from the top of the CNC control unit.
 First, unplug the battery connector, then take the battery out of its case.
 The battery case of a control unit without option slots is located at the top end of the unit as shown in the figure of the previous page. The battery case of a control unit with 2 slots or 4 slots is located in the central area of the top of the unit (between fans).

3) Insert a new battery and reconnect the connector.

WARNING
Using other than the recommended battery may result in the battery exploding. Replace the battery only with the specified battery (A02B–0200–K102).
CAUTION
Steps 1) to 3) should be completed within 30 minutes (or within 5 minutes for the 160i/180i with the PC function). Do not leave the control unit without a battery for any longer than the specified period. Otherwise, the contents of memory may be lost.
If steps 1) to 3) may not be completed within 30 minutes, save all contents of the CMOS memory to the memory card beforehand. Thus, if the contents of the CMOS memory are lost, the contents can be restored easily.
For the method of operation, refer to Maintenance manual (B–63005EN).

When discarding a battery, observe the applicable ordinances or other rules of your local government. Also, cover the terminals of the battery with vinyl tape or the like to prevent a short-circuit.
Replacing commercial alkaline dry cells (size D)

1) Prepare two alkaline dry cells (size D) commercially available.
2) Turn on the power to the Series 16i/18i/160i/180i.
3) Remove the battery case cover.
4) Replace the cells, paying careful attention to their orientation.
5) Reinstall the cover onto the battery case.

CAUTION
When replacing the alkaline dry cells while the power is off, use the same procedure as that for lithium battery replacement described above.
1.2 REPLACING THE BATTERY FOR STAND–ALONE TYPE i SERIES

- Replacing the battery

If a lithium battery is used, have A02B–0200–K102 (FANUC internal code: A98L–0031–0012) handy.

1. Turn the CNC on. About 30 seconds later, turn the CNC off.
2. Remove the battery from the top area of the CNC unit.
 - Disconnect the connector first. Then, remove the battery from the battery case.
 - The battery case is provided in the top area of the face plate of the main CPU board.
3. Replace the battery, then connect the connector.

WARNING
The incorrect mounting of the battery may cause an explosion. Avoid using any battery other than the one specified here (A02B–0200–K102).
NOTE
Complete steps (1) to (3) within 30 minutes. (or, for the 210i with the PC functions, within 5 minutes)
If the battery is left removed for a long time, the memory would lose the contents.
If there is a danger that the replacement cannot be completed within 30 minutes, save the whole contents of the CMOS memory to a memory card. The contents of the memory can be easily restored with the memory card in case the memory loses the contents.

Discard the dead battery, observing appropriate municipal rules and regulations. When discarding the battery, insulate the terminal with a tape so that no short-circuit would occur.
When using commercial D–size alkaline dry cells

- **Replacing the battery**
 1. Have commercial D–size alkaline dry cells handy.
 2. Turn the CNC on.
 3. Remove the lid from the battery case.
 4. Replace the old dry cells with new ones. Mount the dry cells in a correct orientation.
 5. Replace the lid on the battery case.

NOTE
In the power–off state, the battery should be replaced as in the case of the lithium battery, which is described above.
A lithium battery is used to back up BIOS data in the PANEL \(i\). This battery is factory-set in the PANEL \(i\). This battery has sufficient capacity to retain BIOS data for one year.

When the battery voltage becomes low, the LCD screen blinks. (The LCD screen also blinks if a fan alarm is issued.) If the screen blinks, replace the battery as soon as possible (within one week). FANUC recommends that the battery be replaced once per year regardless of whether a battery alarm is issued.

Replacing the battery

1. To guard against the possible loss or destruction of BIOS parameters, write down the BIOS parameter values.
2. Obtain a new lithium battery (A02B–0200–K102).
3. After power has been supplied for at least five seconds, turn off the power to PANEL \(i\). Remove the PANEL \(i\) from the panel so that replacement work can be done from the rear of the intelligent terminal.
4. Detach the connector of the lithium battery, and remove the battery from the battery holder.
5. Run the cable for the new lithium battery as shown in the Fig.1.3.
6. Attach the connector, and place the battery in the battery holder.
7. Install PANEL \(i\) again.
8. Turn on the power, and check that the BIOS parameters are maintained (BIOS setup is not activated forcibly).

Between removing an old battery and inserting new battery, no more than five minutes must be allowed to elapse.
1. METHOD OF REPLACING BATTERY

Fig.1.3 Lithium battery connection on the PANEL i
1.4 BATTERY FOR SEPARATE ABSOLUTE PULSE CODERS (6 VDC)

One battery unit can maintain current position data for six absolute pulse coders for a year.

When the voltage of the battery becomes low, APC alarms 306 to 308 (+ axis number) are displayed on the CRT display. When APC alarm 3n7 is displayed, replace the battery as soon as possible. In general, the battery should be replaced within two or three weeks, however, this depends on the number of pulse coders used.

If the voltage of the battery becomes any lower, the current positions for the pulse coders can no longer be maintained. Turning on the power to the control unit in this state causes APC alarm 300 (reference position return request alarm) to occur. Return the tool to the reference position after replacing the battery.

See Section 7.1.3 for details of connecting the battery to separate absolute pulse coders. The battery for the built-in absolute pulse coder is installed in the servo amplifier. For an explanation of the replacement procedure, refer to the FANUC SERVO MOTOR α Series Maintenance Manual.

Replacing batteries

Obtain four commercially available alkaline batteries (size D).

1. Turn on the power to the machine (i Series CNC).
2. Loosen the screws on the battery case connected to the interface unit of the detector separately installed, and remove the cover.
3. Replace the dry batteries in the case.
 Note the polarity of the batteries as shown in the figure below (orient two batteries one way and the other two in the opposite direction).

(4) After installing the new batteries, replace the cover.
(5) Turn off the power to the machine (i Series CNC).

WARNING

If the batteries are installed incorrectly, an explosion may occur. Never use batteries other than the specified type (Size D alkaline batteries).

CAUTION

Replace batteries while the power to the i Series CNC is on. Note that, if batteries are replaced while no power is supplied to the CNC, the recorded absolute position is lost.
1. METHOD OF REPLACING BATTERY

When the battery voltage falls, APC alarms 306 to 308 are displayed on the screen. When APC alarm 307 is displayed, replace the battery as soon as possible. In general, the battery should be replaced within one or two weeks of the alarm first appearing. This, however, depends on the number of pulse coders being used.

If the battery voltage drops any further, the current positions for the pulse coders will be lost. Turning on the power to the control unit in this state results in APC alarm 300 (reference position return request alarm) being issued. Return the tool to the reference position after replacing the battery. So, FANUC recommends replacing the battery every year concerning without the alarm occurring.

The battery for the built-in absolute pulse coder is connected with the servo amplifier.

Note that the attachment methods of the battery and ordering specifications of battery are different from SERVO AMPLIFIER α series (SVM) to SERVO AMPLIFIER β series.

Replacement procedure

Replace the battery only while the power to the servo unit is on. If the battery is replaced while the power is off, all of the absolute position settings will be lost.

Replacement procedure is as follows.

1. Turn the servo unit (machine) on.
2. Place the machine in the emergency stop state.
3. Confirm that the servo motors are not active.
4. In case of SERVO AMPLIFIER α series, confirm that the LED that indicates DC link charging status is not light.
5. Remove the battery and replace the battery.
6. The replacement is complete. Turn the servo unit (machine) off.

WARNING

- The power magnetic cabinet in which the servo units are mounted has a high-voltage section. Don’t touch this section that presents a severe risk of the electric shock.
- In case of SERVO AMPLIFIER α series, replace the battery after confirm that the LED that indicates DC link charging status is not light. Charged DC link has a high-voltage.
- Ensure that the replacement battery is of the correct type. Otherwise, heat, explosion or ignition will occur. Always use the specified battery.
- Pay careful attention to the polarity of the battery. Fault polarity may be the cause of heat, explosion or ignition. Also, it may be the cause of lost of the absolute position in the pulse coder.
- Attach the socket to unused connector of CX5X or CX5Y. These sockets that protect the connectors are attached to these connectors in shipping from FANUC. If connector pins of CX5X or CX5Y will short, heat, explosion or ignition will occur. Also, it may be the cause of lost of the absolute position in the pulse coder.
SERVO AMPLIFIER α series (SVM)

The battery is connected in either of 2 ways as follows.

Method 1: Attach the lithium battery to the SVM.
Use the battery: A06B–6073–K001.
Method 2: Use the battery case (A06B–6050–K060).
Use the battery: A06B–6050–K061 or D–size alkaline battery.

<table>
<thead>
<tr>
<th>Method</th>
<th>Item</th>
<th>Ordering specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method 1</td>
<td>Battery (Lithium battery)</td>
<td>A06B–6073–K001</td>
</tr>
<tr>
<td>Method 2</td>
<td>Battery (4 pieces of D–size alkaline battery)</td>
<td>A06B–6050–K061</td>
</tr>
</tbody>
</table>

- Attach the lithium battery to the SVM. (Method 1)
 Built the lithium (A06B–6073–K001) battery in the SVM.

 [Attachment procedure]

 1. Check the item 1 to 4 of "Replacement procedure".
 2. Remove a battery cover from SVM.
 3. Attach the battery as shown below.
 4. Re–attach the cover.
 5. Connect the connector of battery with CX5X or CX5Y of SVM.

CAUTIONS

- The connector of the battery can be connected with either of CX5X and CX5Y.
- Pay attention that the battery cable doesn’t have a stretch condition. If this cable is connected on a stretch condition, a bad conductivity may be occurred.

- Replacement of batteries in the battery case. (Method 2)
 Replace four D–size alkaline batteries in the battery case installed in the machine.
[Attachment procedure]

(1) Check the item 1 to 4 of "Replacement procedure".
(2) Have four D–size alkaline batteries on hand.
(3) Loosen the screws on the battery case. Remove the cover.
(4) Replace the alkaline batteries in the case. Pay careful attention to the polarity of the alkaline batteries.
(5) Attach the cover.

The battery is connected in either of 2 ways as follows.

Method 1: Attach the lithium battery to the SVM.
Use the battery: A06B–6093–K001.

Method 2: Use the battery case (A06B–6050–K060).
Use the battery: A06B–6050–K061 or D–size alkaline battery.

<table>
<thead>
<tr>
<th>Method</th>
<th>Item</th>
<th>Ordering specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method 1</td>
<td>Battery (Lithium battery)</td>
<td>A06B–6093–K001</td>
</tr>
<tr>
<td>Method 2</td>
<td>Battery (4 pieces of D–size alkaline battery)</td>
<td>A06B–6050–K061</td>
</tr>
</tbody>
</table>

- Attach the lithium battery to the amplifier. (Method 1)
- Attach the lithium (A06B–6093–K001) battery to the amplifier.

[Attachment procedure]

(1) Check the item 1 to 3 of "Replacement procedure".
(2) In case of SVU–12 or SVU–20, remove the battery cover under the servo unit grasping its left and right sides. In case of SVU–40 or SVU–80, remove the cover attached on right side of the servo unit grasping its upper and lower sides.
(3) Remove the battery from the servo unit.
(4) Replace the battery and connect the battery cable with the connector CX5X or CX5Y of the servo unit.
(5) Mount the battery cover.
1. METHOD OF REPLACING BATTERY

MAINTENANCE

B-63604EN/01

CAUTIONS

- The connector of the battery can be connected with either of CX5X and CX5Y.

- Replacement of batteries in the battery case. (Method 2)
 Replace four D–size alkaline batteries in the battery case installed in the machine.

Pass the battery cable to this slit.

Battery

Battery cover

SVU-12, SVU-20

SVU-40, SVU-80
[Attachment procedure]
(1) Check the item 1 to 3 of "Replacement procedure".
(2) Have four D–size alkaline batteries on hand.
(3) Loosen the screws on the battery case. Remove the cover.
(4) Replace the alkaline batteries in the case. Pay careful attention to the polarity of the alkaline batteries.
(5) Attach the cover.

Used batteries
Old batteries should be disposed as "INDUSTRIAL WASTES" according to the regulations of the country or autonomy where your machine has been installed.
APPENDIX
TAPE CODE LIST

<table>
<thead>
<tr>
<th>Character</th>
<th>ISO code</th>
<th>EIA code</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Number 0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Number 1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>Number 2</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>Number 3</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>4</td>
<td>Number 4</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>5</td>
<td>Number 5</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>6</td>
<td>Number 6</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>7</td>
<td>Number 7</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>8</td>
<td>Number 8</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>9</td>
<td>Number 9</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>a</td>
<td>Address A</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>b</td>
<td>Address B</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>c</td>
<td>Address C</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>d</td>
<td>Address D</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>e</td>
<td>Address E</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>f</td>
<td>Address F</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>g</td>
<td>Address G</td>
</tr>
<tr>
<td>H</td>
<td>0</td>
<td>h</td>
<td>Address H</td>
</tr>
<tr>
<td>I</td>
<td>0</td>
<td>i</td>
<td>Address I</td>
</tr>
<tr>
<td>J</td>
<td>0</td>
<td>j</td>
<td>Address J</td>
</tr>
<tr>
<td>K</td>
<td>0</td>
<td>k</td>
<td>Address K</td>
</tr>
<tr>
<td>L</td>
<td>0</td>
<td>l</td>
<td>Address L</td>
</tr>
<tr>
<td>M</td>
<td>0</td>
<td>m</td>
<td>Address M</td>
</tr>
<tr>
<td>N</td>
<td>0</td>
<td>n</td>
<td>Address N</td>
</tr>
<tr>
<td>O</td>
<td>0</td>
<td>o</td>
<td>Address O</td>
</tr>
<tr>
<td>P</td>
<td>0</td>
<td>p</td>
<td>Address P</td>
</tr>
<tr>
<td>Q</td>
<td>0</td>
<td>q</td>
<td>Address Q</td>
</tr>
<tr>
<td>R</td>
<td>0</td>
<td>r</td>
<td>Address R</td>
</tr>
<tr>
<td>S</td>
<td>0</td>
<td>s</td>
<td>Address S</td>
</tr>
<tr>
<td>T</td>
<td>0</td>
<td>t</td>
<td>Address T</td>
</tr>
<tr>
<td>U</td>
<td>0</td>
<td>u</td>
<td>Address U</td>
</tr>
<tr>
<td>V</td>
<td>0</td>
<td>v</td>
<td>Address V</td>
</tr>
<tr>
<td>W</td>
<td>0</td>
<td>w</td>
<td>Address W</td>
</tr>
<tr>
<td>X</td>
<td>0</td>
<td>x</td>
<td>Address X</td>
</tr>
<tr>
<td>Y</td>
<td>0</td>
<td>y</td>
<td>Address Y</td>
</tr>
<tr>
<td>Z</td>
<td>0</td>
<td>z</td>
<td>Address Z</td>
</tr>
<tr>
<td>ISO code</td>
<td>EIA code</td>
<td>Remarks</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Character</td>
<td>Character</td>
<td>Custom macro B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not used</td>
<td>Used</td>
</tr>
<tr>
<td>DEL</td>
<td>○ ○ ○ ○ ○ ○ ○ ○ ○ ○</td>
<td>Delete (deleting a mispunch)</td>
<td>×</td>
</tr>
<tr>
<td>NUL</td>
<td>○</td>
<td>Blank</td>
<td></td>
</tr>
<tr>
<td>BS</td>
<td>○</td>
<td>BS</td>
<td>×</td>
</tr>
<tr>
<td>HT</td>
<td>○ ○ ○ ○</td>
<td>Tab</td>
<td>×</td>
</tr>
<tr>
<td>LF or NL</td>
<td>○ ○</td>
<td>CR or EOB</td>
<td></td>
</tr>
<tr>
<td>CR</td>
<td>○</td>
<td>Carriage return</td>
<td>×</td>
</tr>
<tr>
<td>SP</td>
<td>○ ○</td>
<td>SP</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>○ ○ ○ ○</td>
<td>ER</td>
<td></td>
</tr>
<tr>
<td>(</td>
<td>○ ○</td>
<td>(2–4–5)</td>
<td></td>
</tr>
<tr>
<td>)</td>
<td>○ ○ ○ ○</td>
<td>(2–4–7)</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>○ ○ ○ ○</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>−</td>
<td>○ ○ ○ ○</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>:</td>
<td>○ ○ ○ ○</td>
<td>:</td>
<td></td>
</tr>
<tr>
<td>/</td>
<td>○ ○ ○ ○ ○ ○</td>
<td>/</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>○ ○ ○ ○ ○ ○</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>○ ○ ○ ○</td>
<td>Parameter (No.6012)</td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>○ ○ ○ ○</td>
<td>Dollar sign</td>
<td>×</td>
</tr>
<tr>
<td>&</td>
<td>○ ○ ○ ○</td>
<td>&</td>
<td></td>
</tr>
<tr>
<td>(Y)</td>
<td>○ ○ ○ ○</td>
<td>Apostrophe</td>
<td></td>
</tr>
<tr>
<td>(×)</td>
<td>○ ○ ○ ○</td>
<td>Asterisk</td>
<td></td>
</tr>
<tr>
<td>,</td>
<td>○ ○ ○ ○</td>
<td>,</td>
<td></td>
</tr>
<tr>
<td>;</td>
<td>○ ○ ○ ○ ○ ○</td>
<td>;</td>
<td></td>
</tr>
<tr>
<td><</td>
<td>○ ○ ○ ○ ○ ○</td>
<td><</td>
<td></td>
</tr>
<tr>
<td>=</td>
<td>○ ○ ○ ○ ○ ○</td>
<td>Parameter (No.6011)</td>
<td></td>
</tr>
<tr>
<td>></td>
<td>○ ○ ○ ○ ○ ○</td>
<td>></td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>○ ○ ○ ○ ○ ○</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>@</td>
<td>○ ○ ○ ○</td>
<td>@</td>
<td></td>
</tr>
<tr>
<td>"</td>
<td>○ ○</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>[</td>
<td>○ ○ ○ ○</td>
<td>Parameter (No.6013)</td>
<td></td>
</tr>
<tr>
<td>]</td>
<td>○ ○ ○ ○</td>
<td>Parameter (No.6014)</td>
<td></td>
</tr>
</tbody>
</table>
NOTE
1 The symbols used in the remark column have the following meanings.
 (Space) : The character will be registered in memory and has a specific meaning.
 If it is used incorrectly in a statement other than a comment, an alarm occurs.
 × : The character will not be registered in memory, but will be ignored.
 Δ : The character will be registered in memory, but will be ignored during program execution.
 ○ : The character will be registered in memory. If it is used in a statement other than a comment, an alarm occurs.
 □ : If it is used in a statement other than a comment, the character will not be registered in memory. If it is used in a comment, it will be registered in memory.
2 Codes not in this table are ignored if their parity is correct.
3 Codes with incorrect parity cause the TH alarm. But they are ignored without generating the TH alarm when they are in the comment section.
4 A character with all eight holes punched is ignored and does not generate TH alarm in EIA code.
Some functions cannot be added as options depending on the model. In the tables below, \(\text{IP} \) presents a combination of arbitrary axis addresses using \(X \) and \(Z \).

- \(x = 1 \)st basic axis (\(X \) usually)
- \(z = 2 \)nd basic axis (\(Z \) usually)

Functions

<table>
<thead>
<tr>
<th>Functions</th>
<th>Illustration</th>
<th>Tape format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positioning (G00)</td>
<td></td>
<td>G00 (\text{IP}__);</td>
</tr>
<tr>
<td>Linear interpolation (G01)</td>
<td></td>
<td>G01 (\text{IP}_ _F_);</td>
</tr>
<tr>
<td>Circular interpolation (G02, G03)</td>
<td></td>
<td>G17 { G02 _X__ _Y__ _R__ _J__ } __F__;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G18 { G02 _X__ _Z__ _R__ _I__ _K__ } __F__;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G19 { G02 _X__ _Y__ _R__ _J__ _K__ } __F__;</td>
</tr>
<tr>
<td>Dwell (G04)</td>
<td></td>
<td>G04 { _X__ _P__ } _;</td>
</tr>
<tr>
<td>Cylindrical interpolation</td>
<td></td>
<td>G07.1 \text{IP}__r_;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cylindrical interpolation mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G07.1 \text{IP}_0 _;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cylindrical interpolation mode cancel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(r): Radius of cylinder</td>
</tr>
<tr>
<td>Change of offsetvalue by program (G10)</td>
<td></td>
<td>Tool geometry offset value</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G10 _P__X__ _Z__ _R__ _Q__;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P=1000+Geometry offset number</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tool wear offset value</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G10 _P__X__ _Z__ _R__ _Q__;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P=Wear offset number</td>
</tr>
</tbody>
</table>
B. LIST OF FUNCTIONS AND TAPE FORMAT

<table>
<thead>
<tr>
<th>Functions</th>
<th>Illustration</th>
<th>Tape format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polar coordinate interpolation (G12.1, G13.1) (G112, G113)</td>
<td></td>
<td>G12.1 ; Polar coordinate interpolation mode G13.1 ; Polar coordinate interpolation mode cancel</td>
</tr>
<tr>
<td>Plane selection (G17, G18, G19)</td>
<td></td>
<td>G17 ; XpYp plane selection G18 ; ZpXp plane selection G19 ; YpZp plane selection</td>
</tr>
<tr>
<td>Inch/metric conversion (G20, G21)</td>
<td></td>
<td>Inch input : G20 Metric input : G21</td>
</tr>
<tr>
<td>Stored stroke check 2, 3 (G22, G23)</td>
<td>(X, Z)</td>
<td>G22X_Z I K ; G23 ;</td>
</tr>
<tr>
<td>Spindle speed fluctuation detection (G25, G26)</td>
<td></td>
<td>G25 ; G26 P Q R ;</td>
</tr>
<tr>
<td>Reference position return check (G27)</td>
<td></td>
<td>G27 P_ ;</td>
</tr>
<tr>
<td>Reference position return (G28) 2nd, reference position return (G30)</td>
<td>Referenceposition (G28) Intermediateposition</td>
<td>G28 P_ ; G30 P_ ;</td>
</tr>
<tr>
<td>Skip function (G31)</td>
<td></td>
<td>G31 P F_ ;</td>
</tr>
<tr>
<td>Thread cutting (G32)</td>
<td></td>
<td>Equal lead thread cutting G32 P F_ ;</td>
</tr>
<tr>
<td>Variable–lead thread cutting (G34)</td>
<td></td>
<td>G34 P F K_ ;</td>
</tr>
<tr>
<td>Automatic tool compensation (G36, G37)</td>
<td>Measurement position Measurement position arrival signal</td>
<td>G36 X xa ; G37 Z za ;</td>
</tr>
<tr>
<td>Functions</td>
<td>Illustration</td>
<td>Tape format</td>
</tr>
<tr>
<td>--</td>
<td>--------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| Cutter compensation (G40, G41, G42) | ![Illustration](G40, G41, G42) | `{ G41 } p_;`
`{ G42 }`
G40 ; Cancel |
| Coordinate system setting | ![Illustration](X, Z) | G50 p_;
Coordinate system setting
G50 S_; Spindle speed setting |
| Spindle speed setting (G50) | ![Illustration](X, Z) | G50 p_;
Coordinate system setting
G50 S_; Spindle speed setting |
| Polygon turning (G50.2, G51.2) (G250, G251) | ![Illustration](G50.2(G251), P, Q) | G51.2 (G251) p_ q_;
P, Q: Rotation ratio of spindle and Rotation axis
G50.2 (G250): Cancel |
| Workpiece coordinate system preset (G50.3) | ![Illustration](G50.3) | G50.3 p 0 ; |
| Local coordinate system (G52) | ![Illustration](X, Y) | G52 p_; |
| Selecting machine coordinate system (G53) | ![Illustration](G53) | G53 p_; |
| Selecting a workpiece coordinate system (G54 to G59) | ![Illustration](Workpiece coordinate system) | `{ G54 } p_;
{ G59 }` |
| Custom macro (G65, G66, G67) | ![Illustration](G65) | One-shot call
G65 p_ l_<argument>_;
P: Program number
L: Repetition count
G66 p_ l_<argument>_;
G67: Cancel |
| Mirror image for double turret (G68, G69) | ![Illustration](Mirror image) | G68 ;
Mirror image for double turret on
G69: Mirror image cancel |
B. LIST OF FUNCTIONS AND TAPE FORMAT

Canned cycle
(G71 to G76) (G90, G92, G94)

<table>
<thead>
<tr>
<th>Functions</th>
<th>Illustration</th>
<th>Tape format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canned cycle</td>
<td>Refer to II.13. FUNCTIONS TO SIMPLIFY PROGRAMMING</td>
<td>N_ G70 P_ Q_ ; G71 U_ R_ ; G71 P_ Q_ U_ W_ F_ S_ T_ ; G72 W_ R_ ; G72 P_ Q_ U_ W_ F_ S_ T_ ; G73 U_ W_ R_ ; G73 P_ Q_ U_ W_ F_ S_ T_ ; G74 R_ ; G74 X(u)_ Z(w)_ P_ Q_ R_ F_ ; G75 R_ ; G75 X(u)_ Z(w)_ P_ Q_ R_ F_ ; G76 P_ Q_ R_ ; G76 X(u)_ Z(w)_ P_ Q_ R_ F_ ; G90 X_ Z_ I_ F_ ; G92 X_ Z_ I_ F_ ; G94 X_ Z_ K_ F_ ;</td>
</tr>
</tbody>
</table>

Canned cycle for drilling
(G80 to G89)

<table>
<thead>
<tr>
<th>Functions</th>
<th>Illustration</th>
<th>Tape format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canned cycle for drilling</td>
<td>Refer to II.13. FUNCTIONS TO SIMPLIFY PROGRAMMING</td>
<td>G80 ; Cancel G83 X(U)_ C(H)_ Z(W)_ R_ Q_ P_ F_ K_ M_ ; G84 X(U)_ C(H)_ Z(W)_ R_ P_ F_ K_ M_ ; G85 X(U)_ C(H)_ Z(W)_ R_ P_ F_ K_ M_ ; G87 Z(W)_ C(H)_ X(U)_ R_ Q_ P_ F_ K_ M_ ; G88 Z(W)_ C(H)_ X(U)_ R_ P_ F_ K_ M_ ; G89 Z(W)_ C(H)_ X(U)_ R_ P_ F_ K_ M_ ;</td>
</tr>
</tbody>
</table>

Constant surface speed control
(G96/G97)

<table>
<thead>
<tr>
<th>Functions</th>
<th>Illustration</th>
<th>Tape format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant surface speed control</td>
<td>Surface speed (m/min or feet/min)</td>
<td>G96 S_ ; Starts constant surface speed control (Surface speed command) G97 S_ ; Constant surface speed is cancelled (Maximum spindle speed command)</td>
</tr>
</tbody>
</table>

Chamfering, Corner R

<table>
<thead>
<tr>
<th>Functions</th>
<th>Illustration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chamfering, Corner R</td>
<td>X_ ; { C±k R_ } P_ ; Z_ ; { C±i R_ } P_ ;</td>
</tr>
</tbody>
</table>

Absolute/incremental programming
(when G code system A)

<table>
<thead>
<tr>
<th>Functions</th>
<th>Illustration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute/incremental programming</td>
<td>X_ Z_ C_ ; Absolute programming U_ W_ H_ ; Incremental programming (Identified by an address word specified with a G function such as G00 or G01)</td>
</tr>
</tbody>
</table>

Absolute/incremental programming
(G90/G91) (during G code system B, C)

<table>
<thead>
<tr>
<th>Functions</th>
<th>Illustration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute/incremental programming</td>
<td>G90_ ; Absolute programming G91_ ; Incremental programming G90_ G91_ ; Used together</td>
</tr>
</tbody>
</table>

Absolute/incremental programming
(G98/G99) (during G code system B, C)

<table>
<thead>
<tr>
<th>Functions</th>
<th>Illustration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute/incremental programming</td>
<td>G98_ ; G99_ ;</td>
</tr>
</tbody>
</table>
C

RANGE OF COMMAND VALUE

Linear axis

- In case of millimeter input, feed screw is millimeter
- In case of inch input, feed screw is millimeter

<table>
<thead>
<tr>
<th></th>
<th>Increment system</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IS–B</td>
</tr>
<tr>
<td>Least input increment</td>
<td>0.001 mm</td>
</tr>
<tr>
<td>Least command increment</td>
<td></td>
</tr>
<tr>
<td>X : 0.0005 mm</td>
<td></td>
</tr>
<tr>
<td>Y : 0.001 mm</td>
<td></td>
</tr>
<tr>
<td>(diameter specification)</td>
<td></td>
</tr>
<tr>
<td>(radius specification)</td>
<td></td>
</tr>
<tr>
<td>Max. programmable</td>
<td>±99999.999 mm</td>
</tr>
<tr>
<td>dimension</td>
<td></td>
</tr>
<tr>
<td>Max. rapid traverse *1</td>
<td>240000 mm/min</td>
</tr>
<tr>
<td>Feedrate range *1</td>
<td></td>
</tr>
<tr>
<td>Feed per minute :</td>
<td></td>
</tr>
<tr>
<td>1 to 240000 mm/min</td>
<td></td>
</tr>
<tr>
<td>Feed per revolution</td>
<td></td>
</tr>
<tr>
<td>0.0001 to 500.0000</td>
<td></td>
</tr>
<tr>
<td>mm/rev</td>
<td></td>
</tr>
<tr>
<td>Feed per minute :</td>
<td></td>
</tr>
<tr>
<td>1 to 100000 mm/min</td>
<td></td>
</tr>
<tr>
<td>Feed per revolution</td>
<td></td>
</tr>
<tr>
<td>0.0001 to 500.0000</td>
<td></td>
</tr>
<tr>
<td>mm/rev</td>
<td></td>
</tr>
<tr>
<td>Incremental feed</td>
<td>0.001, 0.01, 0.1, 1 mm/step</td>
</tr>
<tr>
<td>Tool compensation</td>
<td>0 to ±999.999 mm</td>
</tr>
<tr>
<td>Dwell time</td>
<td>0 to 999999.999 sec</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Increment system</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IS–B</td>
</tr>
<tr>
<td>Least input increment</td>
<td>0.0001 inch</td>
</tr>
<tr>
<td>Least command increment</td>
<td></td>
</tr>
<tr>
<td>X : 0.00005 inch</td>
<td></td>
</tr>
<tr>
<td>Y : 0.001 inch</td>
<td></td>
</tr>
<tr>
<td>(diameter specification)</td>
<td></td>
</tr>
<tr>
<td>(radius specification)</td>
<td></td>
</tr>
<tr>
<td>Max. programmable</td>
<td>±9999.9999 inch</td>
</tr>
<tr>
<td>dimension</td>
<td></td>
</tr>
<tr>
<td>Max. rapid traverse *1</td>
<td>240000 mm/min</td>
</tr>
<tr>
<td>Feedrate range *1</td>
<td></td>
</tr>
<tr>
<td>Feed per minute :</td>
<td></td>
</tr>
<tr>
<td>0.01 to 9600 inch/min</td>
<td></td>
</tr>
<tr>
<td>Feed per revolution</td>
<td></td>
</tr>
<tr>
<td>0.000001 to 9.999999</td>
<td></td>
</tr>
<tr>
<td>inch/rev</td>
<td></td>
</tr>
<tr>
<td>Feed per minute :</td>
<td></td>
</tr>
<tr>
<td>0.01 to 4000 inch/min</td>
<td></td>
</tr>
<tr>
<td>Feed per revolution</td>
<td></td>
</tr>
<tr>
<td>0.000001 to 9.999999</td>
<td></td>
</tr>
<tr>
<td>inch/rev</td>
<td></td>
</tr>
<tr>
<td>Incremental feed</td>
<td>0.0001, 0.01, 0.1 inch/step</td>
</tr>
<tr>
<td>Tool compensation</td>
<td>0 to ±99.9999 inch</td>
</tr>
<tr>
<td>Dwell time</td>
<td>0 to 999999.999 sec</td>
</tr>
</tbody>
</table>
C. RANGE OF COMMAND VALUE

In case of inch input, feed screw is inch

<table>
<thead>
<tr>
<th>Increment system</th>
<th>IS–B</th>
<th>IS–C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Least input increment</td>
<td>0.0001 inch</td>
<td>0.00001 inch</td>
</tr>
<tr>
<td>Least command increment</td>
<td>X : 0.00005 inch (diameter specification)</td>
<td>X : 0.00005 inch (diameter specification)</td>
</tr>
<tr>
<td></td>
<td>Y : 0.0001 inch (radius specification)</td>
<td>Y : 0.00001 inch (radius specification)</td>
</tr>
<tr>
<td>Max. programmable dimension</td>
<td>±9999.9999 inch</td>
<td>±999.99999 inch</td>
</tr>
<tr>
<td>Max. rapid traverse *1</td>
<td>9600 inch/min</td>
<td>4000 inch/min</td>
</tr>
<tr>
<td>Feedrate range *1</td>
<td>Feed per minute : 0.01 to 9600 inch/min</td>
<td>Feed per minute : 0.01 to 4000 inch/min</td>
</tr>
<tr>
<td></td>
<td>Feed per revolution 0.000001 to 9.999999 inch/rev</td>
<td>Feed per revolution 0.000001 to 9.999999 inch/rev</td>
</tr>
<tr>
<td>Incremental feed</td>
<td>0.0001, 0.001, 0.01, 0.1 inch/step</td>
<td>0.00001, 0.001, 0.001, 0.01 inch/step</td>
</tr>
<tr>
<td>Tool compensation</td>
<td>0 to ±999.9999 inch</td>
<td>0 to ±999.9999 inch</td>
</tr>
<tr>
<td>Dwell time</td>
<td>0 to 999999.999 sec</td>
<td>0 to 999999.999 sec</td>
</tr>
</tbody>
</table>

In case of millimeter input, feed screw is inch

<table>
<thead>
<tr>
<th>Increment system</th>
<th>IS–B</th>
<th>IS–C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Least input increment</td>
<td>0.001 mm</td>
<td>0.0001 mm</td>
</tr>
<tr>
<td>Least command increment</td>
<td>X : 0.00005 inch (diameter specification)</td>
<td>X : 0.00005 inch (diameter specification)</td>
</tr>
<tr>
<td></td>
<td>Y : 0.0001 inch (radius specification)</td>
<td>Y : 0.00001 inch (radius specification)</td>
</tr>
<tr>
<td>Max. programmable dimension</td>
<td>±999999.999 mm</td>
<td>±999999.999 mm</td>
</tr>
<tr>
<td>Max. rapid traverse *1</td>
<td>9600 inch/min</td>
<td>960 inch/min</td>
</tr>
<tr>
<td>Feedrate range *1</td>
<td>Feed per minute : 1 to 240000 mm/min</td>
<td>Feed per minute : 1 to 100000 mm/min</td>
</tr>
<tr>
<td></td>
<td>Feed per revolution 0.0001 to 500.0000 mm/rev</td>
<td>Feed per revolution 0.0001 to 500.0000 mm/rev</td>
</tr>
<tr>
<td>Incremental feed</td>
<td>0.001, 0.01, 0.1, 1 mm/step</td>
<td>0.0001, 0.001, 0.01, 0.1 mm/step</td>
</tr>
<tr>
<td>Tool compensation</td>
<td>0 to ±999.9999 mm</td>
<td>0 to ±999.9999 mm</td>
</tr>
<tr>
<td>Dwell time</td>
<td>0 to 999999.999 sec</td>
<td>0 to 999999.999 sec</td>
</tr>
</tbody>
</table>
Rotation axis

<table>
<thead>
<tr>
<th></th>
<th>Increment system</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IS–B</td>
<td>IS–C</td>
</tr>
<tr>
<td>Least input increment</td>
<td>0.001 deg</td>
<td>0.0001 deg</td>
</tr>
<tr>
<td>Least command increment</td>
<td>0.001 deg</td>
<td>0.0001 deg</td>
</tr>
<tr>
<td>Max. programmable dimension</td>
<td>±99999.999 deg</td>
<td>±9999.9999 deg</td>
</tr>
<tr>
<td>Max. rapid traverse *1</td>
<td>240000 deg/min</td>
<td>100000 deg/min</td>
</tr>
<tr>
<td>Feedrate range *1</td>
<td>1 to 240000 deg/min</td>
<td>1 to 100000 deg/min</td>
</tr>
<tr>
<td>Incremental feed</td>
<td>0.001, 0.01, 0.1, 1 deg/step</td>
<td>0.0001, 0.001, 0.01, 0.1 deg/step</td>
</tr>
</tbody>
</table>

NOTE

*1 The feedrate range shown above are limitations depending on CNC interpolation capacity.
As a whole system, limitations depending on servo system must also be considered.
NOMOGRAPHS
D. NOMOGRAPHS

D.1 INCORRECT THREADED LENGTH

The leads of a thread are generally incorrect in δ_1 and δ_2, as shown in Fig. D.1 (a), due to automatic acceleration and deceleration. Thus distance allowances must be made to the extent of δ_1 and δ_2 in the program.

Fig. D.1 (a) Incorrect thread position

Explanations

• How to determine δ_2

$$\delta_2 = T_1 V \text{ (mm)} \quad \ldots \ldots \quad (1)$$

$$V = \frac{1}{60} R L$$

T_1: Time constant of servo system (sec)
V: Cutting speed (mm/sec)
R: Spindle speed (min$^{-1}$)
L: Thread feed (mm)

Time constant T_1 (sec) of the servo system: Usually 0.033 s.

• How to determine δ_1

$$\delta_1 = (t - T_1 + T_1 \exp(-\frac{L}{T_1}))V \quad \ldots \ldots \quad (2)$$

$$a = \exp(-\frac{t}{T_1}) \quad \ldots \ldots \quad (3)$$

T_1: Time constant of servo system (sec)
V: Cutting speed (mm/sec)

Time constant T_1 (sec) of the servo system: Usually 0.033 s.

The lead at the beginning of thread cutting is shorter than the specified lead L, and the allowable lead error is ΔL. Then as follows.

$$a = \frac{\Delta L}{L}$$

When the value of HtI is determined, the time lapse until the thread accuracy is attained. The time HtI is substituted in (2) to determine δ_1: Constants V and T_1 are determined in the same way as for δ_2. Since the calculation of δ_1 is rather complex, a nomography is provided on the following pages.
- How to use nomograph

First specify the class and the lead of a thread. The thread accuracy, α, will be obtained at (1), and depending on the time constant of cutting feed acceleration/ deceleration, the δ_1 value when $V = 10\text{mm/s}$ will be obtained at (2). Then, depending on the speed of thread cutting, δ_1 for speed other than 10mm/s can be obtained at (3).

![Diagram](image)

Fig.D.1(b) Nomograph

NOTE
The equations for δ_1, and δ_2 are for when the acceleration/deceleration time constant for cutting feed is 0.
D.2
SIMPLE
CALCULATION OF INCORRECT THREAD LENGTH

Explanations

- **How to determine** δ_2

$$\delta_2 = \frac{LR}{1800} \times (-1-lna) \text{ (mm)}$$

R: Spindle speed (min$^{-1}$)
L: Thread lead (mm)

* When time constant T of the servo system is 0.033 s.

- **How to determine** δ_1

$$\delta_1 = \frac{LR}{1800} \times (-1-lna) \text{ (mm)}$$

$$= \delta_2 \times (-1-lna) \text{ (mm)}$$

R: Spindle speed (min$^{-1}$)
L: Thread lead (mm)

* When time constant T of the servo system is 0.033 s.

Following a is a permitted value of thread:

<table>
<thead>
<tr>
<th>a</th>
<th>$-1-lna$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.005</td>
<td>4.298</td>
</tr>
<tr>
<td>0.01</td>
<td>3.605</td>
</tr>
<tr>
<td>0.015</td>
<td>3.200</td>
</tr>
<tr>
<td>0.02</td>
<td>2.912</td>
</tr>
</tbody>
</table>

Examples

$R=350\text{min}^{-1}$
$L=1\text{mm}$
$a=0.01$ then

$$\delta_2 = \frac{350 \times 1}{1800} = 0.194 \text{ (mm)}$$

$$\delta_1 = \delta_2 \times 3.605 = 0.701 \text{ (mm)}$$
Nomograph for obtaining approach distance δ_1
When servo system delay (by exponential acceleration/deceleration at cutting or caused by the positioning system when a servo motor is used) is accompanied by cornering, a slight deviation is produced between the tool path (tool center path) and the programmed path as shown in Fig. D.3 (a).

Time constant T_1 of the exponential acceleration/deceleration is fixed to 0.

![Diagram of tool path and programmed path](image)

Fig. D.3 (a) Slight deviation between the tool path and the programmed path

This tool path is determined by the following parameters:
- Feedrate (V_1, V_2)
- Corner angle (θ)
- Exponential acceleration / deceleration time constant (T_1) at cutting ($T_1 = 0$)
- Presence or absence of buffer register.

The above parameters are used to theoretically analyze the tool path and above tool path is drawn with the parameter which is set as an example. When actually programming, the above items must be considered and programming must be performed carefully so that the shape of the workpiece is within the desired precision.

In other words, when the shape of the workpiece is not within the theoretical precision, the commands of the next block must not be read until the specified feedrate becomes zero. The dwell function is then used to stop the machine for the appropriate period.
Analysis

The tool path shown in Fig. D.3 (b) is analyzed based on the following conditions:
Feedrate is constant at both blocks before and after cornering.
The controller has a buffer register. (The error differs with the reading speed of the tape reader, number of characters of the next block, etc.)

\[V_{X1} = V \cos \phi_1 \]
\[V_{Y1} = V \sin \phi_1 \]
\[V_{X2} = V \cos \phi_2 \]
\[V_{Y2} = V \sin \phi_2 \]

- Description of conditions and symbols

- Feedrate at both blocks before and after cornering
- \(V_{X1} \): X–axis component of feedrate of preceding block
- \(V_{Y1} \): Y–axis component of feedrate of preceding block
- \(V_{X2} \): X–axis component of feedrate of following block
- \(V_{Y2} \): Y–axis component of feedrate of following block
- \(\theta \): Corner angle
- \(\phi_1 \): Angle formed by specified path direction of preceding block and X–axis
- \(\phi_2 \): Angle formed by specified path direction of following block and X–axis
Initial value calculation

![Diagram](image)

Fig. D.3(c) Initial value

The initial value when cornering begins, that is, the X and Y coordinates at the end of command distribution by the controller, is determined by the feedrate and the positioning system time constant of the servo motor.

\[
X_0 = V_{x0}(T_1 + T_2) \\
Y_0 = V_{y0}(T_1 + T_2)
\]

- \(T_1 \): Exponential acceleration / deceleration time constant. (T=0)
- \(T_2 \): Time constant of positioning system (Inverse of position loop gain)

Analysis of corner tool path

The equations below represent the feedrate for the corner section in X-axis direction and Y-axis direction.

\[
V_x(t) = (V_{x2} - V_{x1})[1 - \frac{V_{x1}}{T_1 - T_2}T_1\exp(-\frac{t}{T_1}) - T_2\exp(-\frac{t}{T_2})] + V_{x1}
\]

\[
= V_{x1}[1 - \frac{V_{x1}}{T_1 - T_2}T_1\exp(-\frac{t}{T_1}) - T_2\exp(-\frac{t}{T_2})]
\]

\[
V_y(t) = \frac{V_{y1} - V_{y2}}{T_1 - T_2}T_1\exp(-\frac{t}{T_1}) - T_2\exp(-\frac{t}{T_2})] + V_{y2}
\]

Therefore, the coordinates of the tool path at time \(t \) are calculated from the following equations:

\[
X(t) = \int_0^t V_x(t)\,dt - X_0
\]

\[
= \frac{V_{x2} - V_{x1}}{T_1 - T_2}T_1^2\exp(-\frac{t}{T_1}) - T_2^2\exp(-\frac{t}{T_2}) - V_{x2}(T_1 + T_2 - t)
\]

\[
Y(t) = \int_0^t V_y(t)\,dt - Y_0
\]

\[
= \frac{V_{y2} - V_{y1}}{T_1 - T_2}T_1^2\exp(-\frac{t}{T_1}) - T_2^2\exp(-\frac{t}{T_2}) - V_{y2}(T_1 + T_2 - t)
\]
When a servo motor is used, the positioning system causes an error between input commands and output results. Since the tool advances along the specified segment, an error is not produced in linear interpolation. In circular interpolation, however, radial errors may be produced, specially for circular cutting at high speeds. This error can be obtained as follows:

\[
\Delta r = \frac{1}{2} \left(T_1^2 + T_2^2 \left(1 - \alpha^2\right) \right) \frac{v^2}{T} \quad \text{. (1)}
\]

\(\Delta r \) : Maximum radius error (mm)
\(v \) : Feedrate (mm/s)
\(r \) : Circle radius (mm)
\(T_1 \) : Exponential acceleration/deceleration time constant (sec) at cutting (\(T=0 \))
\(T_2 \) : Time constant of positioning system (sec). (Inverse of position loop gain)
\(\alpha \) : Feed forward coefficient (%)

In the case of bell–shaped acceleration/deceleration and linear acceleration/deceleration after cutting feed interpolation, an approximation of this radius error can be obtained with the following expression:

Linear acceleration/deceleration after cutting feed interpolation

\[
\Delta r = \left(\frac{1}{24} T_1^2 + \frac{1}{2} T_2^2 \left(1 - \alpha^2\right) \right) \frac{v^2}{T}
\]

Bell–shaped acceleration/deceleration after cutting feed interpolation

\[
\Delta r = \left(\frac{1}{48} T_1^2 + \frac{1}{2} T_2^2 \left(1 - \alpha^2\right) \right) \frac{v^2}{T}
\]

Thus, the radius error in the case of bell–shaped acceleration/deceleration and linear acceleration/deceleration after interpolation is smaller than in case of exponential acceleration/deceleration by a factor of 12, excluding any error caused by a servo loop time constant.

Since the machining radius \(r \) (mm) and allowable error \(\Delta r \) (mm) of the workpiece is given in actual machining, the allowable limit feedrate \(v \) (mm/sec) is determined by equation (1).

Since the acceleration/deceleration time constant at cutting which is set by this equipment varies with the machine tool, refer to the manual issued by the machine tool builder.
Parameter 3402 (CLR) is used to select whether resetting the CNC places it in the cleared state or in the reset state (0: reset state/1: cleared state). The symbols in the tables below mean the following:
○: The status is not changed or the movement is continued.
×: The status is cancelled or the movement is interrupted.

<table>
<thead>
<tr>
<th>Item</th>
<th>When turning power on</th>
<th>Cleared</th>
<th>Reset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset value</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Data set by the MDI setting operation</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Parameter</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Various data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Programs in memory</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>
| Contents in the buffer storage | × | × | ○ (MDI mode)
 | | | × : Other mode | |
| Display of sequence number | ○ | ○ (Note 1) | ○ (Note 1) |
| One shot G code | × | × | × |
| Modal G code | Initial G codes. | Initial G codes. | ○ |
| | (The G20 and G21 codes return to the same state they were in when the power was last turned off.) | (G20/G21 are not changed.) | |
| F | Zero | Zero | ○ |
| S, T, M | × | ○ | ○ |
| K (Number of repeats) | × | × | × |
| Work coordinate value | Zero | ○ | ○ |
E. STATUS WHEN TURNING POWER ON, WHEN CLEAR AND WHEN RESET

<table>
<thead>
<tr>
<th>Item</th>
<th>When turning power on</th>
<th>Cleared</th>
<th>Reset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action in operation</td>
<td>Movement</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>Dwell</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>Issuance of M, S and T codes</td>
<td>×</td>
<td>Depending on parameter LVK(No.5003#6)</td>
</tr>
<tr>
<td></td>
<td>Tool offset</td>
<td>×</td>
<td>LVK(No.5003#6)/C0102: MDI mode Other modes depend on parameter LVK(No.5003#6).</td>
</tr>
<tr>
<td></td>
<td>Tool nose radius compensation</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>Storing called subprogram number</td>
<td>×</td>
<td>× (Note 2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output signals</th>
<th>CNC alarm signal AL</th>
<th>Extinguish if there is no cause for the alarm</th>
<th>Extinguish if there is no cause for the alarm</th>
<th>Extinguish if there is no cause for the alarm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference position return completion LED</td>
<td>×</td>
<td>○ (×: Emergency stop)</td>
<td>○ (×: Emergency stop)</td>
<td></td>
</tr>
<tr>
<td>S, T and B codes</td>
<td>×</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>M code</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>M, S and T strobe signals</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Spindle revolution signal (S analog signal)</td>
<td>×</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>CNC ready signal MA</td>
<td>ON</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>Servo ready signal SA</td>
<td>ON (When other than servo alarm)</td>
<td>ON (When other than servo alarm)</td>
<td>ON (When other than servo alarm)</td>
<td></td>
</tr>
<tr>
<td>Cycle start LED (STL)</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Feed hold LED (SPL)</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
</tr>
</tbody>
</table>

NOTE
1. When heading is performed, the main program number is displayed.
2. When a reset is performed during execution of a subprogram, control returns the main program. Execution cannot be started from the middle of the subprogram.
<table>
<thead>
<tr>
<th>Character</th>
<th>Code</th>
<th>Comment</th>
<th>Character</th>
<th>Code</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>065</td>
<td>6</td>
<td>6</td>
<td>054</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>066</td>
<td>7</td>
<td>7</td>
<td>055</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>067</td>
<td>8</td>
<td>8</td>
<td>056</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>068</td>
<td>9</td>
<td>9</td>
<td>057</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>069</td>
<td></td>
<td>32</td>
<td></td>
<td>Space</td>
</tr>
<tr>
<td>F</td>
<td>070</td>
<td>!</td>
<td>33</td>
<td></td>
<td>Exclamation mark</td>
</tr>
<tr>
<td>G</td>
<td>071</td>
<td>"</td>
<td>34</td>
<td></td>
<td>Quotation mark</td>
</tr>
<tr>
<td>H</td>
<td>072</td>
<td>#</td>
<td>35</td>
<td></td>
<td>Hash sign</td>
</tr>
<tr>
<td>I</td>
<td>073</td>
<td>$</td>
<td>36</td>
<td></td>
<td>Dollar sign</td>
</tr>
<tr>
<td>J</td>
<td>074</td>
<td>%</td>
<td>37</td>
<td></td>
<td>Percent</td>
</tr>
<tr>
<td>K</td>
<td>075</td>
<td>&</td>
<td>38</td>
<td></td>
<td>Ampersand</td>
</tr>
<tr>
<td>L</td>
<td>076</td>
<td>'</td>
<td>39</td>
<td></td>
<td>Apostrophe</td>
</tr>
<tr>
<td>M</td>
<td>077</td>
<td>(</td>
<td>40</td>
<td></td>
<td>Left parenthesis</td>
</tr>
<tr>
<td>N</td>
<td>078</td>
<td>)</td>
<td>41</td>
<td></td>
<td>Right parenthesis</td>
</tr>
<tr>
<td>O</td>
<td>079</td>
<td>*</td>
<td>42</td>
<td></td>
<td>Asterisk</td>
</tr>
<tr>
<td>P</td>
<td>080</td>
<td>+</td>
<td>43</td>
<td></td>
<td>Plus sign</td>
</tr>
<tr>
<td>Q</td>
<td>081</td>
<td>,</td>
<td>44</td>
<td></td>
<td>Comma</td>
</tr>
<tr>
<td>R</td>
<td>082</td>
<td>-</td>
<td>45</td>
<td></td>
<td>Minus sign</td>
</tr>
<tr>
<td>S</td>
<td>083</td>
<td>.</td>
<td>46</td>
<td></td>
<td>Period</td>
</tr>
<tr>
<td>T</td>
<td>084</td>
<td>/</td>
<td>47</td>
<td></td>
<td>Slash</td>
</tr>
<tr>
<td>U</td>
<td>085</td>
<td>:</td>
<td>48</td>
<td></td>
<td>Colon</td>
</tr>
<tr>
<td>V</td>
<td>086</td>
<td>;</td>
<td>49</td>
<td></td>
<td>Semicolon</td>
</tr>
<tr>
<td>W</td>
<td>087</td>
<td><</td>
<td>50</td>
<td></td>
<td>Left angle bracket</td>
</tr>
<tr>
<td>X</td>
<td>088</td>
<td>=</td>
<td>51</td>
<td></td>
<td>Equal sign</td>
</tr>
<tr>
<td>Y</td>
<td>089</td>
<td>></td>
<td>52</td>
<td></td>
<td>Right angle bracket</td>
</tr>
<tr>
<td>Z</td>
<td>090</td>
<td>?</td>
<td>53</td>
<td></td>
<td>Question mark</td>
</tr>
<tr>
<td>0</td>
<td>048</td>
<td>@</td>
<td>54</td>
<td></td>
<td>HAtl mark</td>
</tr>
<tr>
<td>1</td>
<td>049</td>
<td>[</td>
<td>55</td>
<td></td>
<td>Left square bracket</td>
</tr>
<tr>
<td>2</td>
<td>050</td>
<td>^</td>
<td>56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>051</td>
<td>¥</td>
<td>57</td>
<td></td>
<td>Yen sign</td>
</tr>
<tr>
<td>4</td>
<td>052</td>
<td>]</td>
<td>58</td>
<td></td>
<td>Right square bracket</td>
</tr>
<tr>
<td>5</td>
<td>053</td>
<td>_</td>
<td>59</td>
<td></td>
<td>Underscore</td>
</tr>
</tbody>
</table>
G. ALARM LIST

1) Program errors (P/S alarm)

<table>
<thead>
<tr>
<th>Number</th>
<th>Message</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>PLEASE TURN OFF POWER</td>
<td>A parameter which requires the power off was input, turn off power.</td>
</tr>
<tr>
<td>001</td>
<td>TH PARITY ALARM</td>
<td>TH alarm (A character with incorrect parity was input). Correct the tape.</td>
</tr>
<tr>
<td>002</td>
<td>TV PARITY ALARM</td>
<td>TV alarm (The number of characters in a block is odd). This alarm will be generated only when the TV check is effective.</td>
</tr>
<tr>
<td>003</td>
<td>TOO MANY DIGITS</td>
<td>Data exceeding the maximum allowable number of digits was input.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Refer to the item of max. programmable dimensions.)</td>
</tr>
<tr>
<td>004</td>
<td>ADDRESS NOT FOUND</td>
<td>A numeral or the sign “−” was input without an address at the beginning of a block. Modify the program.</td>
</tr>
<tr>
<td>005</td>
<td>NO DATA AFTER ADDRESS</td>
<td>The address was not followed by the appropriate data but was followed by another address or EOB code. Modify the program.</td>
</tr>
<tr>
<td>006</td>
<td>ILLEGAL USE OF NEGATIVE SIGN</td>
<td>Sign “−” input error (Sign “−” was input after an address with which it cannot be used. Or two or more “−” signs were input.) Modify the program.</td>
</tr>
<tr>
<td>007</td>
<td>ILLEGAL USE OF DECIMAL POINT</td>
<td>Decimal point “.” input error (A decimal point was input after an address with which it can not be used. Or two decimal points were input.) Modify the program.</td>
</tr>
<tr>
<td>009</td>
<td>ILLEGAL ADDRESS INPUT</td>
<td>Unusable character was input in significant area. Modify the program.</td>
</tr>
<tr>
<td>010</td>
<td>IMPROPER G–CODE</td>
<td>An unusable G code or G code corresponding to the function not provided is specified. Modify the program.</td>
</tr>
<tr>
<td>011</td>
<td>NO FEEDRATE COMMANDED</td>
<td>Feedrate was not commanded to a cutting feed or the feedrate was inadequate. Modify the program.</td>
</tr>
<tr>
<td>014</td>
<td>ILLEGAL LEAD COMMAND</td>
<td>In variable lead threading, the lead incremental and decremental output by address K exceed the maximum command value or a command such that the lead becomes a negative value is given. Modify the program.</td>
</tr>
<tr>
<td>015</td>
<td>TOO MANY AXES COMMANDED</td>
<td>An attempt has been made to move the tool along more than the maximum number of simultaneously controlled axes. Alternatively, no axis movement command or an axis movement command for two or more axes has been specified in the block containing the command for skip using the torque limit signal (G31 P99/98). The command must be accompanied with an axis movement command for a single axis, in the same block.</td>
</tr>
<tr>
<td>020</td>
<td>OVER TOLERANCE OF RADIUS</td>
<td>In circular interpolation (G02 or G03), difference of the distance between the start point and the center of an arc and that between the end point and the center of the arc exceeded the value specified in parameter No. 3410.</td>
</tr>
<tr>
<td>021</td>
<td>ILLEGAL PLANE AXIS COMMAND</td>
<td>An axis not included in the selected plane (by using G17, G18, G19) was commanded in circular interpolation. Modify the program.</td>
</tr>
<tr>
<td>022</td>
<td>CIRCULAR INTERPOLATION</td>
<td>In circular interpolation, radius R, or the distance between the start point and the center of the arc, I, J, or K, has not been specified.</td>
</tr>
<tr>
<td>023</td>
<td>ILLEGAL RADIUS COMMAND</td>
<td>In circular interpolation by radius designation, negative value was commanded for address R. Modify the program.</td>
</tr>
<tr>
<td>Number</td>
<td>Message</td>
<td>Contents</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>028</td>
<td>ILLEGAL PLANE SELECT</td>
<td>In the plane selection command, two or more axes in the same direction are commanded. Modify the program.</td>
</tr>
<tr>
<td>029</td>
<td>ILLEGAL OFFSET VALUE</td>
<td>The offset values specified by T code is too large. Modify the program.</td>
</tr>
<tr>
<td>030</td>
<td>ILLEGAL OFFSET NUMBER</td>
<td>The offset number in T function specified for tool offset is too large. Modify the program.</td>
</tr>
<tr>
<td>031</td>
<td>ILLEGAL P COMMAND IN G10</td>
<td>In setting an offset amount by G10, the offset number following address P was excessive or it was not specified. Modify the program.</td>
</tr>
<tr>
<td>032</td>
<td>ILLEGAL OFFSET VALUE IN G10</td>
<td>In setting an offset amount by G10 or in writing an offset amount by system variables, the offset amount was excessive.</td>
</tr>
<tr>
<td>033</td>
<td>NO SOLUTION AT NRC</td>
<td>A point of intersection cannot be determined for tool nose radius compensation. Modify the program.</td>
</tr>
<tr>
<td>034</td>
<td>NO CIRC ALLOWED IN ST-UP/EXT BLK</td>
<td>The start up or cancel was going to be performed in the G02 or G03 mode in tool nose radius compensation. Modify the program.</td>
</tr>
<tr>
<td>035</td>
<td>CAN NOT COMMANDED G31</td>
<td>Skip cutting (G31) was specified in tool nose radius compensation mode. Modify the program.</td>
</tr>
<tr>
<td>037</td>
<td>CAN NOT CHANGE PLANE IN NRC</td>
<td>The offset plane is switched in tool nose radius compensation. Modify the program.</td>
</tr>
<tr>
<td>038</td>
<td>INTERFERENCE IN CIRCULAR BLOCK</td>
<td>Overcutting will occur in tool nose radius compensation because the arc start point or end point coincides with the arc center. Modify the program.</td>
</tr>
<tr>
<td>039</td>
<td>CHF/CNR NOT ALLOWED IN NRC</td>
<td>Chamfering or corner R was specified with a start-up, a cancel, or switching between G41 and G42 in tool nose radius compensation. The program may cause overcutting to occur in chamfering or corner R. Modify the program.</td>
</tr>
<tr>
<td>040</td>
<td>INTERFERENCE IN G90/G94 BLOCK</td>
<td>Overcutting will occur in tool nose radius compensation in canned cycle G90 or G94. Modify the program.</td>
</tr>
<tr>
<td>041</td>
<td>INTERFERENCE IN NRC</td>
<td>Overcutting will occur in tool nose radius compensation. Modify the program.</td>
</tr>
<tr>
<td>046</td>
<td>ILLEGAL REFERENCE RETURN COMMAND</td>
<td>Other than P2, P3 and P4 are commanded for 2nd, 3rd and 4th reference position return command.</td>
</tr>
<tr>
<td>050</td>
<td>CHF/CNR NOT ALLOWED IN THRD BLK</td>
<td>Chamfering or corner R is commanded in the thread cutting block. Modify the program.</td>
</tr>
<tr>
<td>051</td>
<td>MISSING MOVE AFTER CHF/CNR</td>
<td>Improper movement or the move distance was specified in the block next to the chamfering or corner R block. Modify the program.</td>
</tr>
<tr>
<td>052</td>
<td>CODE IS NOT G01 AFTER CHF/CNR</td>
<td>The block next to the chamfering or corner R block is not G01. Modify the program.</td>
</tr>
<tr>
<td>053</td>
<td>TOO MANY ADDRESS COMMANDS</td>
<td>In the chamfering and corner R commands, two or more of I, K and R are specified. Otherwise, the character after a comma(“,”) is not C or R in direct drawing dimensions programming. Modify the program.</td>
</tr>
<tr>
<td>054</td>
<td>NO TAPER ALLOWED AFTER CHF/CNR</td>
<td>A block in which chamfering in the specified angle or the corner R was specified includes a taper command. Modify the program.</td>
</tr>
<tr>
<td>055</td>
<td>MISSING MOVE VALUE IN CHF/CNR</td>
<td>In chamfering or corner R block, the move distance is less than chamfer or corner R amount.</td>
</tr>
<tr>
<td>056</td>
<td>NO END POINT & ANGLE IN CHF/CNR</td>
<td>Neither the end point nor angle is specified in the command for the block next to that for which only the angle is specified (A). In the chamfering common, I(K) is commanded for the X(Z) axis.</td>
</tr>
<tr>
<td>057</td>
<td>NO SOLUTION OF BLOCK END</td>
<td>Block end point is not calculated correctly in direct dimension drawing programming.</td>
</tr>
<tr>
<td>Number</td>
<td>Message</td>
<td>Contents</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>058</td>
<td>END POINT NOT FOUND</td>
<td>Block end point is not found in direct dimension drawing programming.</td>
</tr>
<tr>
<td>059</td>
<td>PROGRAM NUMBER NOT FOUND</td>
<td>In an external program number search or external workpiece number search, a specified program number was not found. Otherwise, a program specified for searching is being edited in background processing. Alternatively, a program specified by an one-touch macro call is not registered in memory. Check the program number and external signal. Or discontinue the background editing.</td>
</tr>
<tr>
<td>060</td>
<td>SEQUENCE NUMBER NOT FOUND</td>
<td>Commanded sequence number was not found in the sequence number search. Check the sequence number.</td>
</tr>
<tr>
<td>061</td>
<td>ADDRESS P/Q NOT FOUND IN G70–G73</td>
<td>Address P or Q is not specified in G70, G71, G72, or G73 command. Modify the program.</td>
</tr>
<tr>
<td>062</td>
<td>ILLEGAL COMMAND IN G71–G76</td>
<td>1 The depth of cut in G71 or G72 is zero or negative value.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 The repetitive count in G73 is zero or negative value.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 The negative value is specified to (\Delta i) or (\Delta k) is zero in G74 or G75.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 A value other than zero is specified to address U or W, though (\Delta i) or (\Delta k) is zero in G74 or G75.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 A negative value is specified to (\Delta d), though the relief direction in G74 or G75 is determined.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 Zero or a negative value is specified to the height of thread or depth of cut of first time in G76.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 The specified minimum depth of cut in G76 is greater than the height of thread.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 An unusable angle of tool tip is specified in G76. Modify the program.</td>
</tr>
<tr>
<td>063</td>
<td>SEQUENCE NUMBER NOT FOUND</td>
<td>The sequence number specified by address P in G70, G71, G72, or G73 command cannot be searched. Modify the program.</td>
</tr>
<tr>
<td>064</td>
<td>SHAPE PROGRAM NOT MONOTONOUSLY</td>
<td>A target shape which is not monotonous increase or decrease was specified in a repetitive canned cycle (G71 or G72).</td>
</tr>
<tr>
<td>065</td>
<td>ILLEGAL COMMAND IN G71–G73</td>
<td>1 G00 or G01 is not commanded at the block with the sequence number which is specified by address P in G71, G72, or G73 command.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 Address Z(W) or X(U) was commanded in the block with a sequence number which is specified by address P in G71 or G72, respectively.</td>
</tr>
<tr>
<td>066</td>
<td>IMPROPER G–CODE IN G71–G73</td>
<td>An unallowable G code was commanded between two blocks specified by address P in G71, G72, or G73. Modify the program.</td>
</tr>
<tr>
<td>067</td>
<td>CAN NOT OPERATE IN MDI MODE</td>
<td>G70, G71, G72, or G73 command with address P and Q was specified. Modify the program.</td>
</tr>
<tr>
<td>069</td>
<td>FORMAT ERROR IN G70–G73</td>
<td>The final move command in the blocks specified by P and Q of G70, G71, G72, or G73 ended with chamfering or corner R.</td>
</tr>
<tr>
<td>070</td>
<td>NO PROGRAM SPACE IN MEMORY</td>
<td>The memory area is insufficient. Delete any unnecessary programs, then retry.</td>
</tr>
<tr>
<td>071</td>
<td>DATA NOT FOUND</td>
<td>The address to be searched was not found. Or the program with specified program number was not found in program number search. Check the data.</td>
</tr>
<tr>
<td>072</td>
<td>TOO MANY PROGRAMS</td>
<td>The number of programs to be stored exceeded 63 (basic), 125 (option), 200 (option), 400 (option), or 1000 (option). Delete unnecessary programs and execute program registration again.</td>
</tr>
<tr>
<td>073</td>
<td>PROGRAM NUMBER ALREADY IN USE</td>
<td>The commanded program number has already been used. Change the program number or delete unnecessary programs and execute program registration again.</td>
</tr>
<tr>
<td>Number</td>
<td>Message</td>
<td>Contents</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>074</td>
<td>ILLEGAL PROGRAM NUMBER</td>
<td>The program number is other than 1 to 9999. Modify the program number.</td>
</tr>
<tr>
<td>075</td>
<td>PROTECT</td>
<td>An attempt was made to register a program whose number was protected.</td>
</tr>
<tr>
<td>076</td>
<td>ADDRESS P NOT DEFINED</td>
<td>Address P (program number) was not commanded in the block which includes an M98, G65, or G66 command. Modify the program.</td>
</tr>
<tr>
<td>077</td>
<td>SUB PROGRAM NESTING ERROR</td>
<td>The subprogram was called in five folds. Modify the program.</td>
</tr>
<tr>
<td>078</td>
<td>NUMBER NOT FOUND</td>
<td>A program number or a sequence number which was specified by address P in the block which includes an M98, M99, M65 or G66 was not found. (The sequence number specified by a GOTO statement was not found. Otherwise, a called program is being edited in background processing. Correct the program, or discontinue the background editing.)</td>
</tr>
<tr>
<td>079</td>
<td>PROGRAM VERIFY ERROR</td>
<td>In memory or program collation a program in memory does not agree with that read from an external I/O device. Check both the programs in memory and those from the external device.</td>
</tr>
<tr>
<td>080</td>
<td>G37 ARRIVAL SIGNAL NOT ASSERTED</td>
<td>In the automatic tool compensation function (G36, G37), the measurement position reach signal (XAE or ZAE) is not turned on within an area specified in parameter 6254 (value ε). This is due to a setting or operator error.</td>
</tr>
<tr>
<td>081</td>
<td>OFFSET NUMBER NOT FOUND IN G37</td>
<td>Automatic tool compensation (G36, G37) was specified without a T code. (Automatic tool compensation function) Modify the program.</td>
</tr>
<tr>
<td>082</td>
<td>T-CODE NOT ALLOWED IN G37</td>
<td>T code and automatic tool compensation (G36, G37) were specified in the same block. (Automatic tool compensation function) Modify the program.</td>
</tr>
<tr>
<td>083</td>
<td>ILLEGAL AXIS COMMAND IN G37</td>
<td>In automatic tool compensation (G36, G37), an invalid axis was specified or the command is incremental. Modify the program.</td>
</tr>
<tr>
<td>085</td>
<td>COMMUNICATION ERROR</td>
<td>When entering data in the memory by using Reader / Puncher interface, an overrun, parity or framing error was generated. The number of bits of input data or setting of baud rate or specification No. of I/O unit is incorrect.</td>
</tr>
<tr>
<td>086</td>
<td>DR SIGNAL OFF</td>
<td>When entering data in the memory by using Reader / Puncher interface, the ready signal (DR) of reader / puncher was turned off. Power supply of I/O unit is off or cable is not connected or a P.C.B. is defective.</td>
</tr>
<tr>
<td>087</td>
<td>BUFFER OVERFLOW</td>
<td>When entering data in the memory by using Reader / Puncher interface, though the read terminate command is specified, input is not interrupted after 10 characters read. I/O unit or P.C.B. is defective.</td>
</tr>
<tr>
<td>090</td>
<td>REFERENCE INCOMPLETE RETURN</td>
<td>The reference position return cannot be performed normally because the reference position return start point is too close to the reference position or the speed is too slow. Separate the start point far enough from the reference position, or specify a sufficiently fast speed for reference position return. Check the program contents.</td>
</tr>
<tr>
<td>091</td>
<td>REFERENCE INCOMPLETE RETURN</td>
<td>In the automatic operation halt state, manual reference position return cannot be performed.</td>
</tr>
<tr>
<td>092</td>
<td>AXES NOT ON THE REFERENCE POINT</td>
<td>The commanded axis by G27 (Reference position return check) did not return to the reference position.</td>
</tr>
<tr>
<td>094</td>
<td>P TYPE NOT ALLOWED (COORD CHG)</td>
<td>P type cannot be specified when the program is restarted. (After the automatic operation was interrupted, the coordinate system setting operation was performed.) Perform the correct operation according to the operator’s manual.</td>
</tr>
<tr>
<td>095</td>
<td>P TYPE NOT ALLOWED (EXT OFS CHG)</td>
<td>P type cannot be specified when the program is restarted. (After the automatic operation was interrupted, the external workpiece offset amount changed.) Perform the correct operation according to the operator’s manual.</td>
</tr>
<tr>
<td>Number</td>
<td>Message</td>
<td>Contents</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>096</td>
<td>P TYPE NOT ALLOWED (WRK OFS CHG)</td>
<td>P type cannot be specified when the program is restarted. (After the automatic operation was interrupted, the workpiece offset amount changed.) Perform the correct operation according to the operator’s manual.</td>
</tr>
<tr>
<td>097</td>
<td>P TYPE NOT ALLOWED (AUTO EXEC)</td>
<td>P type cannot be directed when the program is restarted. (After power ON, after emergency stop or P/S alarm 94 to 97 were reset, no automatic operation was performed.) Perform automatic operation.</td>
</tr>
<tr>
<td>098</td>
<td>G28 FOUND IN SEQUENCE RETURN</td>
<td>A command of the program restart was specified without the reference position return operation after power ON or emergency stop, and G28 was found during search. Perform the reference position return.</td>
</tr>
<tr>
<td>099</td>
<td>MDI EXEC NOT ALLOWED AFT. SEARCH</td>
<td>After completion of search in program restart, a move command is given with MDI.</td>
</tr>
<tr>
<td>100</td>
<td>PARAMETER WRITE ENABLE</td>
<td>On the PARAMETER(SETTING) screen, PWE(parameter writing enabled) is set to 1. Set it to 0, then reset the system.</td>
</tr>
<tr>
<td>101</td>
<td>PLEASE CLEAR MEMORY</td>
<td>The power turned off while rewriting the memory by program edit operation. If this alarm has occurred, press <RESET> while pressing <PROG>, and only the program being edited will be deleted. Register the deleted program.</td>
</tr>
<tr>
<td>111</td>
<td>CALCULATED DATA OVERFLOW</td>
<td>The result of calculation is out of the allowable range (−10^{47} to −10^{−29}, 0, and 10^{−29} to 10^{47}).</td>
</tr>
<tr>
<td>112</td>
<td>DIVIDED BY ZERO</td>
<td>Division by zero was specified. (including tan 90°) Modify the program.</td>
</tr>
<tr>
<td>113</td>
<td>IMPROPER COMMAND</td>
<td>A function which cannot be used in custom macro is commanded. Modify the program.</td>
</tr>
<tr>
<td>114</td>
<td>FORMAT ERROR IN MACRO</td>
<td>There is an error in other formats than <Formula>. Modify the program.</td>
</tr>
<tr>
<td>115</td>
<td>ILLEGAL VARIABLE NUMBER</td>
<td>A value not defined as a variable number is designated in the custom macro or in high-speed cycle cutting. Modify the program.</td>
</tr>
<tr>
<td>116</td>
<td>WRITE PROTECTED VARIABLE</td>
<td>The left side of substitution statement is a variable whose substitution is inhibited. Modify the program.</td>
</tr>
<tr>
<td>118</td>
<td>PARENTHESIS NESTING ERROR</td>
<td>The nesting of bracket exceeds the upper limit (quintuple). Modify the program.</td>
</tr>
<tr>
<td>119</td>
<td>ILLEGAL ARGUMENT</td>
<td>The SORT argument is negative, BCD argument is negative, or other values than 0 to 9 are present on each line of BIN argument. Modify the program.</td>
</tr>
<tr>
<td>122</td>
<td>QUADRUPLE MACRO MODAL–CALL</td>
<td>A total of four macro calls and macro modal calls are nested. Modify the program.</td>
</tr>
<tr>
<td>123</td>
<td>CAN NOT USE MACRO COMMAND IN DNC</td>
<td>Macro control command is used during DNC operation. Modify the program.</td>
</tr>
<tr>
<td>124</td>
<td>MISSING END STATEMENT</td>
<td>DO – END does not correspond to 1:1. Modify the program.</td>
</tr>
<tr>
<td>125</td>
<td>FORMAT ERROR IN MACRO</td>
<td><Formula> format is erroneous. Modify the program.</td>
</tr>
<tr>
<td>126</td>
<td>ILLEGAL LOOP NUMBER</td>
<td>In DON, 1 ≤ n ≤ 3 is not established. Modify the program.</td>
</tr>
<tr>
<td>127</td>
<td>NC, MACRO STATEMENT IN SAME BLOCK</td>
<td>NC and custom macro commands coexist. Modify the program.</td>
</tr>
<tr>
<td>128</td>
<td>ILLEGAL MACRO SEQUENCE NUMBER</td>
<td>The sequence number specified in the branch command was not 0 to 9999. Or, it cannot be searched. Modify the program.</td>
</tr>
<tr>
<td>129</td>
<td>ILLEGAL ARGUMENT ADDRESS</td>
<td>An address which is not allowed in <Argument Designation > is used. Modify the program.</td>
</tr>
<tr>
<td>Number</td>
<td>Message</td>
<td>Contents</td>
</tr>
<tr>
<td>--------</td>
<td>---------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>130</td>
<td>ILLEGAL AXIS OPERATION</td>
<td>An axis control command was given by PMC to an axis controlled by CNC. Or an axis control command was given by CNC to an axis controlled by PMC. Modify the program.</td>
</tr>
<tr>
<td>131</td>
<td>TOO MANY EXTERNAL ALARM MESSAGES</td>
<td>Five or more alarms have generated in external alarm message. Consult the PMC ladder diagram to find the cause.</td>
</tr>
<tr>
<td>132</td>
<td>ALARM NUMBER NOT FOUND</td>
<td>No alarm No. concerned exists in external alarm message clear. Check the PMC ladder diagram.</td>
</tr>
<tr>
<td>133</td>
<td>ILLEGAL DATA IN EXT. ALARM MSG</td>
<td>Small section data is erroneous in external alarm message or external operator message. Check the PMC ladder diagram.</td>
</tr>
<tr>
<td>135</td>
<td>SPINDLE ORIENTATION PLEASE</td>
<td>Without any spindle orientation, an attempt was made for spindle indexing. Perform spindle orientation.</td>
</tr>
<tr>
<td>136</td>
<td>C/H–CODE & MOVE CMD IN SAME BLK.</td>
<td>A move command of other axes was specified to the same block as spindle indexing addresses C, H. Modify the program.</td>
</tr>
<tr>
<td>137</td>
<td>M–CODE & MOVE CMD IN SAME BLK.</td>
<td>A move command of other axes was specified to the same block as M–code related to spindle indexing. Modify the program.</td>
</tr>
<tr>
<td>139</td>
<td>CAN NOT CHANGE PMC CONTROL AXIS</td>
<td>An axis is selected in commanding by PMC axis control. Modify the program.</td>
</tr>
<tr>
<td>145</td>
<td>ILLEGAL COMMAND G112/G113</td>
<td>The conditions are incorrect when the polar coordinate interpolation starts or it is canceled. 1) In modes other than G40, G12.1/G13.1 was specified. 2) An error is found in the plane selection. Parameters No. 5460 and No. 5461 are incorrectly specified. Modify the value of program or parameter.</td>
</tr>
<tr>
<td>146</td>
<td>IMPROPER G CODE</td>
<td>G codes which cannot be specified in the polar coordinate interpolation mode was specified. See section II–4.4 and modify the program.</td>
</tr>
<tr>
<td>149</td>
<td>FORMAT ERROR IN G10L3</td>
<td>A code other than Q1, Q2, P1 or P2 was specified as the life count type in the extended tool life management.</td>
</tr>
<tr>
<td>150</td>
<td>ILLEGAL TOOL GROUP NUMBER</td>
<td>Tool Group No. exceeds the maximum allowable value. Modify the program.</td>
</tr>
<tr>
<td>151</td>
<td>TOOL GROUP NUMBER NOT FOUND</td>
<td>The tool group commanded in the machining program is not set. Modify the value of program or parameter.</td>
</tr>
<tr>
<td>152</td>
<td>NO SPACE FOR TOOL ENTRY</td>
<td>The number of tools within one group exceeds the maximum value registrable. Modify the number of tools.</td>
</tr>
<tr>
<td>153</td>
<td>T–CODE NOT FOUND</td>
<td>In tool life data registration, a T code was not specified where one should be. Correct the program.</td>
</tr>
<tr>
<td>155</td>
<td>ILLEGAL T–CODE IN M06</td>
<td>In the machining program, M06 and T code in the same block do not correspond to the group in use. Correct the program.</td>
</tr>
<tr>
<td>156</td>
<td>P/L COMMAND NOT FOUND</td>
<td>P and L commands are missing at the head of program in which the tool group is set. Correct the program.</td>
</tr>
<tr>
<td>157</td>
<td>TOO MANY TOOL GROUPS</td>
<td>The number of tool groups to be set exceeds the maximum allowable value. (See parameter No. 6800 bit 0 and 1) Modify the program.</td>
</tr>
<tr>
<td>158</td>
<td>ILLEGAL TOOL LIFE DATA</td>
<td>The tool life to be set is too excessive. Modify the setting value.</td>
</tr>
<tr>
<td>159</td>
<td>TOOL DATA SETTING INCOMPLETE</td>
<td>During executing a life data setting program, power was turned off. Set again.</td>
</tr>
<tr>
<td>175</td>
<td>ILLEGAL G107 COMMAND</td>
<td>Conditions when performing circular interpolation start or cancel not correct. To change the mode to the cylindrical interpolation mode, specify the command in a format of "G07.1 rotation–axis name radius of cylinder."</td>
</tr>
<tr>
<td>Number</td>
<td>Message</td>
<td>Contents</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| 176 | IMPROPER G–CODE IN G107 | Any of the following G codes which cannot be specified in the cylindrical interpolation mode was specified.
1) G codes for positioning, such as G28, G76, G81 – G89, including the codes specifying the rapid traverse cycle
2) G codes for setting a coordinate system: G50, G52
3) G code for selecting coordinate system: G53 G54–G59
Modify the program. |
| 177 | CHECK SUM ERROR (G05 MODE) | Check sum error
Modify the program. |
| 178 | G05 NOT ALLOWED IN G41/G42 MODE | G05 was commanded in the G41/G42 mode.
Correct the program. |
| 179 | PARAM. (NO. 7510) SETTING ERROR | The number of controlled axes set by the parameter 7510 exceeds the maximum number. Modify the parameter setting value. |
| 180 | COMMUNICATION ERROR (REMOTE BUF) | Remote buffer connection alarm has generated. Confirm the number of cables, parameters and I/O device. |
| 190 | ILLEGAL AXIS SELECT | In the constant surface speed control, the axis specification is wrong.
(See parameter No. 3770.) The specified axis command (P) contains an illegal value.
Correct the program. |
| 194 | SPINDLE COMMAND IN SYNCHRO–MODE | A contour control mode, spindle positioning (Cs–axis control) mode, or rigid tapping mode was specified during the serial spindle synchronous control mode. Correct the program so that the serial spindle synchronous control mode is released in advance. |
| 197 | C–AXIS COMMANDED IN SPINDLE MODE | The program specified a movement along the Cf–axis when the signal CON(DGN=G027#7) was off. Correct the program, or consult the PMC ladder diagram to find the reason the signal is not turned on. |
| 199 | MACRO WORD UNDEFINED | Undefined macro word was used. Modify the custom macro. |
| 200 | ILLEGAL S CODE COMMAND | In the rigid tapping, an S value is out of the range or is not specified.
The maximum values for S which can be specified in rigid tapping is set in parameters 5241 to 5243. Change the setting in the parameter or modify the program. |
| 201 | FEEDRATE NOT FOUND IN RIGID TAP | In the rigid tapping, no F value is specified.
Correct the program. |
| 202 | POSITION LSI OVERFLOW | In the rigid tapping, spindle distribution value is too large. |
| 203 | PROGRAM MISS AT RIGID TAPPING | In the rigid tapping, position for a rigid M code (M29) or an S command is incorrect. Modify the program. |
| 204 | ILLEGAL AXIS OPERATION | In the rigid tapping, an axis movement is specified between the rigid M code (M29) block and G84 (G88) block. Modify the program. |
| 205 | RIGID MODE DI SIGNAL OFF | 1 Rigid tapping signal (DGNG061 #1) is not 1 when G84 (G88) is executed though the rigid M code (M29) is specified.
2 The spindle of rigid tapping is not selected in a multi–spindle system (by DI signal G27, #0 and #1, or G61, #4 and #5).
Consult the PMC ladder diagram to find the reason the signal is not turned on. |
| 207 | RIGID DATA MISMATCH | The specified distance was too short or too long in rigid tapping. |
| 210 | CAN NOT COMAND M198/M099 | 1 M198 and M199 are executed in the schedule operation. Or M198 is executed in the DNC operation. Modify the program.
2 In a multiple repetitive pocketing canned cycle, an interrupt macro was specified, and M99 was executed. |
<p>| 211 | G31 (HIGH) NOT ALLOWED IN G99 | G31 is commanded in the per revolution command when the high–speed skip option is provided. Modify the program. |
| 212 | ILLEGAL PLANE SELECT | The direct drawing dimensions programming is commanded for the plane other than the Z–X plane. Correct the program. |</p>
<table>
<thead>
<tr>
<th>Number</th>
<th>Message</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>213</td>
<td>ILLEGAL COMMAND IN SYNCHRO–MODE</td>
<td>Movement is commanded for the axis to be synchronously controlled.</td>
</tr>
<tr>
<td>214</td>
<td>ILLEGAL COMMAND IN SYNCHRO–MODE</td>
<td>Coordinate system is set or tool compensation of the shift type is executed in the synchronous control. Correct the program.</td>
</tr>
<tr>
<td>217</td>
<td>DUPLICATE G251 (COMMANDS)</td>
<td>G51.2 or G251 is further commanded in the polygon machining mode. Modify the program.</td>
</tr>
<tr>
<td>218</td>
<td>NOT FOUND P/Q COMMAND IN G251</td>
<td>P or Q is not commanded in the G251 block, or the command value is out of the range. Modify the program.</td>
</tr>
<tr>
<td>219</td>
<td>COMMAND INDEPENDENTLY G250/G251</td>
<td>G251 and G250 are not independent blocks.</td>
</tr>
<tr>
<td>220</td>
<td>ILLEGAL COMMAND IN SYNCHRO–MODE</td>
<td>In the synchronous operation, movement is commanded by the NC program or PMC axis control interface for the synchronous axis.</td>
</tr>
<tr>
<td>221</td>
<td>ILLEGAL COMMAND IN SYNCHRO–MODE</td>
<td>Polygon machining synchronous operation and axis control or balance cutting are executed at a time. Modify the program.</td>
</tr>
<tr>
<td>224</td>
<td>RETURN TO REFERENCE POINT</td>
<td>Not returned to reference point before cycle start.</td>
</tr>
</tbody>
</table>
| 231 | FORMAT ERROR IN G10 OR L50 | Any of the following errors occurred in the specified format at the programmable–parameter input.
1 Address N or R was not entered.
2 A number not specified for a parameter was entered.
3 The axis number was too large.
4 An axis number was not specified in the axis–type parameter.
5 An axis number was specified in the parameter which is not an axis type.
6 An attempt was made to reset bit 4 of parameter 3202 (NE9) or change parameter 3210 (PSSWD) when they are protected by a password. Correct the program. |
<p>| 233 | DEVICE BUSY | When an attempt was made to use a unit such as that connected via the RS–232–C interface, other users were using it. |
| 239 | BP/S ALARM | While punching was being performed with the function for controlling external I/O units, background editing was performed. |
| 240 | BP/S ALARM | Background editing was performed during MDI operation. |
| 244 | P/S ALARM | In the skip function activated by the torque limit signal, the number of accumulated erroneous pulses exceed 32767 before the signal was input. Therefore, the pulses cannot be corrected with one distribution. Change the conditions, such as federates along axes and torque limit, and try again. |
| 245 | T–CODE NOT ALLOWED IN THIS BLOCK | One of the G codes, G50, G10, and G04, which cannot be specified in the same block as a T code, was specified with a T code. |
| 5010 | END OF RECORD | The end of record (%) was specified. |
| 5020 | PARAMETER OF RESTART ERROR | An erroneous parameter was specified for restarting a program. |
| 5030 | ILLEGAL COMMAND (G100) | The end command (G110) was specified before the registration start command (G101, G102, or G103) was specified for the B–axis. |
| 5031 | ILLEGAL COMMAND (G100, G102, G103) | While a registration start command (G101, G102, or G103) was being executed, another registration start command was specified for the B–axis. |
| 5032 | NEW PRG REGISTERED IN B–AXS MOVE | While the machine was moving about the B–axis, an attempt was made to register another move command. |
| 5033 | NO PROG SPACE IN MEMORY B–AXIS | Commands for movement about the B–axis were not registered because of insufficient program memory. |
| 5034 | PLURAL COMMAND IN G110 | Multiple movements were specified with the G110 code for the B–axis. |
| 5035 | NO FEEDRATE COMMANDED B–AXIS | A feedrate was not specified for cutting feed about the B–axis. |</p>
<table>
<thead>
<tr>
<th>Number</th>
<th>Message</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>5036</td>
<td>ADDRESS R NOT DEFINED IN G81–G86</td>
<td>Point R was not specified for the canned cycle for the B–axis.</td>
</tr>
<tr>
<td>5037</td>
<td>ADDRESS Q NOT DEFINED IN G83</td>
<td>Depth of cut Q was not specified for the G83 code (peck drilling cycle). Alternatively, 0 was specified in Q for the B–axis.</td>
</tr>
<tr>
<td>5038</td>
<td>TOO MANY START M–CODE COMMAND</td>
<td>More than six M codes for starting movement about the B–axis were specified.</td>
</tr>
<tr>
<td>5039</td>
<td>START UNREGISTERED B–AXIS PROG</td>
<td>An attempt was made to execute a program for the B–axis which had not been registered.</td>
</tr>
<tr>
<td>5040</td>
<td>CAN NOT COMMANDED B–AXIS MOVE</td>
<td>The machine could not move about the B–axis because parameter No.8250 was incorrectly specified, or because the PMC axis system could not be used.</td>
</tr>
<tr>
<td>5041</td>
<td>CAN NOT COMMANDED G110 BLOCK</td>
<td>Blocks containing the G110 codes were successively specified in tool–tip radius compensation for the B–axis.</td>
</tr>
<tr>
<td>5046</td>
<td>ILLEGAL PARAMETER (ST.COMP)</td>
<td>Parameters related to straightness compensation have been erroneously specified. Possible causes are as follows:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Invalid axis numbers have been assigned to move or compensation axes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 The number of pitch error compensation points between the maximum positive and maximum negative points exceeds 128.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Straightness compensation point numbers have been assigned in other than ascending order.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 Straightness compensation points could not be located between the maximum positive and maximum negative pitch error compensation points.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 The amount of compensation per compensation point is too large or too small.</td>
</tr>
<tr>
<td>5073</td>
<td>NO DECIMAL POINT</td>
<td>A decimal point is not specified for a command for which a decimal point must be specified.</td>
</tr>
<tr>
<td>5074</td>
<td>ADDRESS DUPLICATION ERROR</td>
<td>The same address appears more than once in a block. Alternatively, a block contains two or more G codes belonging to the same group.</td>
</tr>
<tr>
<td>5134</td>
<td>FSSB : OPEN READY TIME OUT</td>
<td>Initialization did not place FSSB in the open ready state.</td>
</tr>
<tr>
<td>5135</td>
<td>FSSB : ERROR MODE</td>
<td>FSSB has entered error mode.</td>
</tr>
<tr>
<td>5136</td>
<td>FSSB : NUMBER OF AMPS IS SMALL</td>
<td>In comparison with the number of controlled axes, the number of amplifiers recognized by FSSB is not enough.</td>
</tr>
<tr>
<td>5137</td>
<td>FSSB : CONFIGURATION ERROR</td>
<td>FSSB detected a configuration error.</td>
</tr>
<tr>
<td>5138</td>
<td>FSSB : AXIS SETTING NOT COMPLETE</td>
<td>In automatic setting mode, axis setting has not been made yet. Perform axis setting on the FSSB setting screen.</td>
</tr>
<tr>
<td>5139</td>
<td>FSSB : ERROR</td>
<td>Servo initialization did not terminate normally. The optical cable may be defective or there may be an error in connection to the amplifier or another module. Check the optical cable and the connection status.</td>
</tr>
<tr>
<td>5195</td>
<td>DIRECTION CAN NOT BE JUDGED</td>
<td>When the touch sensor with a single contact signal input is used in the direct input B function for tool offset measurement values, the stored pulse direction is not constant. One of the following conditions exists:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>· The stop state exists in offset write mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>· Servo off state</td>
</tr>
<tr>
<td></td>
<td></td>
<td>· The direction varies.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>· Movement takes place simultaneously along two axes.</td>
</tr>
<tr>
<td>5197</td>
<td>FSSB : OPEN TIME OUT</td>
<td>The CNC permitted FSSB to open, but FSSB was not opened.</td>
</tr>
<tr>
<td>5198</td>
<td>FSSB : ID DATA NOT READ</td>
<td>Temporary assignment failed, so amplifier initial ID information could not be read.</td>
</tr>
<tr>
<td>Number</td>
<td>Message</td>
<td>Contents</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>5212</td>
<td>SCREEN COPY : PARAMETER ERROR</td>
<td>There is a parameter setting error. Check that 4 is set as the I/O channel (parameter No. 0020).</td>
</tr>
<tr>
<td>5213</td>
<td>SCREEN COPY : COMMUNICATION ERROR</td>
<td>The memory card cannot be used. Check the memory card. (Check whether the memory card is write-protected or defective.)</td>
</tr>
<tr>
<td>5214</td>
<td>SCREEN COPY : DATA TRANSFER ERROR</td>
<td>Data transfer to the memory card failed. Check whether the memory card space is insufficient and whether the memory card was removed during data transfer.</td>
</tr>
<tr>
<td>5220</td>
<td>REFERENCE POINT ADJUSTMENT MODE</td>
<td>A parameter for automatically set a reference position is set. (Bit 2 of parameter No. 1819 = 1) Perform automatic setting. (Position the machine at the reference position manually, then perform manual reference position return.) Supplementary: Automatic setting sets bit 2 of parameter No. 1819 to 0.</td>
</tr>
<tr>
<td>5222</td>
<td>SRAM CORRECTABLE ERROR</td>
<td>The SRAM correctable error cannot be corrected. Cause: A memory problem occurred during memory initialization. Action: Replace the master printed circuit board (SRAM module).</td>
</tr>
<tr>
<td>5227</td>
<td>FILE NOT FOUND</td>
<td>A specified file is not found during communication with the built-in Handy File.</td>
</tr>
<tr>
<td>5228</td>
<td>SAME NAME USED</td>
<td>There are duplicate file names in the built-in Handy File.</td>
</tr>
<tr>
<td>5229</td>
<td>WRITE PROTECTED</td>
<td>A floppy disk in the built-in Handy File is write protected.</td>
</tr>
<tr>
<td>5231</td>
<td>TOO MANY FILES</td>
<td>The number of files exceeds the limit during communication with the built-in Handy File.</td>
</tr>
<tr>
<td>5232</td>
<td>DATA OVER-FLOW</td>
<td>There is not enough floppy disk space in the built-in Handy File.</td>
</tr>
<tr>
<td>5235</td>
<td>COMMUNICATION ERROR</td>
<td>A communication error occurred during communication with the built-in Handy File.</td>
</tr>
<tr>
<td>5237</td>
<td>READ ERROR</td>
<td>A floppy disk in the built-in Handy File cannot be read from. The floppy disk may be defective, or the head may be dirty. Alternatively, the Handy File is defective.</td>
</tr>
<tr>
<td>5238</td>
<td>WRITE ERROR</td>
<td>A floppy disk in the built-in Handy File cannot be written to. The floppy disk may be defective, or the head may be dirty. Alternatively, the Handy File is defective.</td>
</tr>
<tr>
<td>5257</td>
<td>G41/G42 NOT ALLOWED IN MDI MODE</td>
<td>G41/G42 (cutter compensation C: M series, tool–nose radius compensation: T series) was specified in MDI mode. (Depending on the setting of bit 4 of parameter No. 5008)</td>
</tr>
<tr>
<td>5303</td>
<td>TOUCH PANEL ERROR</td>
<td>A touch panel error occurred. Cause: 1. The touch panel is kept pressed. 2. The touch panel was pressed when power was turned on. Remove the above causes, and turn on the power again.</td>
</tr>
<tr>
<td>5306</td>
<td>MODE CHANGE ERROR</td>
<td>In an one-touch macro call, the mode is not normally switched at the beginning.</td>
</tr>
<tr>
<td>5311</td>
<td>FSSB : ILLEGAL CONNECTION</td>
<td>1. This alarm is issued if, in a pair of axes in which one axis has an odd servo axis number (parameter No. 1023) and the other has an even servo axis number that is adjacent to the odd servo axis number, one of the axes is assigned to an amplifier connected to an FSSB in a system different from that for the other axis. 2. This alarm is issued if the system does not satisfy a constraint for performing high-speed HRV control, current control periods for two FSSBs are different, and it is specified that pulse modules connected to an FSSB in different paths are to be used.</td>
</tr>
</tbody>
</table>
2) Background edit alarm

<table>
<thead>
<tr>
<th>Number</th>
<th>Message</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>070 to 074</td>
<td>BP/S alarm</td>
<td>BP/S alarm occurs in the same number as the P/S alarm that occurs in ordinary program edit.</td>
</tr>
<tr>
<td>085 to 087</td>
<td>BP/S alarm</td>
<td>It was attempted to select or delete in the background a program being selected in the foreground. (Note) Use background editing correctly.</td>
</tr>
</tbody>
</table>

NOTE
Alarm in background edit is displayed in the key input line of the background edit screen instead of the ordinary alarm screen and is resettable by any of the MDI key operation.

3) Absolute pulse coder (APC) alarm

<table>
<thead>
<tr>
<th>Number</th>
<th>Message</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>n AXIS NEED ZRN</td>
<td>Manual reference position return is required for the nth-axis (n=1 – 4).</td>
</tr>
<tr>
<td>301</td>
<td>APC ALARM:n AXIS COMMUNICATION</td>
<td>nth-axis (n=1 – 4) APC communication error. Failure in data transmission Possible causes include a faulty APC, cable, or servo interface module.</td>
</tr>
<tr>
<td>302</td>
<td>APC ALARM:n AXIS OVER TIME</td>
<td>nth-axis (n=1 – 4) APC overtime error. Failure in data transmission. Possible causes include a faulty APC, cable, or servo interface module.</td>
</tr>
<tr>
<td>303</td>
<td>APC ALARM:n AXIS FRAMING</td>
<td>nth-axis (n=1 – 4) APC framing error. Failure in data transmission. Possible causes include a faulty APC, cable, or servo interface module.</td>
</tr>
<tr>
<td>304</td>
<td>APC ALARM:n AXIS PARITY</td>
<td>nth-axis (n=1 – 4) APC parity error. Failure in data transmission. Possible causes include a faulty APC, cable, or servo interface module.</td>
</tr>
<tr>
<td>305</td>
<td>APC ALARM:n AXIS PULSE MISS</td>
<td>nth-axis (n=1 – 4) APC pulse error alarm. APC alarm. APC or cable may be faulty.</td>
</tr>
<tr>
<td>306</td>
<td>APC ALARM:n AXIS BATTERY ZERO</td>
<td>nth-axis (n=1 – 4) APC battery voltage has decreased to a low level so that the data cannot be held. APC alarm. Battery or cable may be faulty.</td>
</tr>
<tr>
<td>307</td>
<td>APC ALARM:n AXIS BATTERY DOWN 1</td>
<td>nth-axis (n=1 – 4) axis APC battery voltage reaches a level where the battery must be renewed. APC alarm. Replace the battery.</td>
</tr>
<tr>
<td>308</td>
<td>APC ALARM:n AXIS BATTERY DOWN 2</td>
<td>nth-axis (n=1 – 4) APC battery voltage has reached a level where the battery must be renewed (including when power is OFF). APC alarm. Replace battery.</td>
</tr>
<tr>
<td>309</td>
<td>APC ALARM:n AXIS ZRN IMPOSSIBLE</td>
<td>An attempt was made to perform reference position return without rotating the motor through one or more turns. Rotate the motor through one or more turns, turn off the power then on again, then perform reference position return.</td>
</tr>
</tbody>
</table>

4) Serial pulse coder (SPC) alarms

<table>
<thead>
<tr>
<th>No.</th>
<th>Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>360</td>
<td>n AXIS : ABNORMAL CHECKSUM (INT)</td>
<td>A checksum error occurred in the built-in pulse coder.</td>
</tr>
<tr>
<td>361</td>
<td>n AXIS : ABNORMAL PHASE DATA (INT)</td>
<td>A phase data error occurred in the built-in pulse coder.</td>
</tr>
<tr>
<td>362</td>
<td>n AXIS : ABNORMAL REV.DATA (INT)</td>
<td>A rotation speed count error occurred in the built-in pulse coder.</td>
</tr>
<tr>
<td>363</td>
<td>n AXIS : ABNORMAL CLOCK (INT)</td>
<td>A clock error occurred in the built-in pulse coder.</td>
</tr>
</tbody>
</table>
G. ALARM LIST

<table>
<thead>
<tr>
<th>No.</th>
<th>Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>364</td>
<td>n AXIS : SOFT PHASE ALARM (INT)</td>
<td>The digital servo software detected invalid data in the built–in pulse coder.</td>
</tr>
<tr>
<td>365</td>
<td>n AXIS : BROKEN LED (INT)</td>
<td>An LED error occurred in the built–in pulse coder.</td>
</tr>
<tr>
<td>366</td>
<td>n AXIS : PULSE MISS (INT)</td>
<td>A pulse error occurred in the built–in pulse coder.</td>
</tr>
<tr>
<td>367</td>
<td>n AXIS : COUNT MISS (INT)</td>
<td>A count error occurred in the built–in pulse coder.</td>
</tr>
<tr>
<td>368</td>
<td>n AXIS : SERIAL DATA ERROR (INT)</td>
<td>Communication data from the built–in pulse coder cannot be received.</td>
</tr>
<tr>
<td>369</td>
<td>n AXIS : DATA TRANS. ERROR (INT)</td>
<td>A CRC or stop bit error occurred in the communication data being received.</td>
</tr>
<tr>
<td>380</td>
<td>n AXIS : BROKEN LED (EXT)</td>
<td>The separate detector is erroneous.</td>
</tr>
<tr>
<td>381</td>
<td>n AXIS : ABNORMAL PHASE (EXT LIN)</td>
<td>A phase data error occurred in the separate linear scale.</td>
</tr>
<tr>
<td>382</td>
<td>n AXIS : COUNT MISS (EXT)</td>
<td>A pulse error occurred in the separate detector.</td>
</tr>
<tr>
<td>383</td>
<td>n AXIS : PULSE MISS (EXT)</td>
<td>A count error occurred in the separate detector.</td>
</tr>
<tr>
<td>384</td>
<td>n AXIS : SOFT PHASE ALARM (EXT)</td>
<td>The digital servo software detected invalid data in the separate detector.</td>
</tr>
<tr>
<td>385</td>
<td>n AXIS : SERIAL DATA ERROR (EXT)</td>
<td>Communication data from the separate detector cannot be received.</td>
</tr>
<tr>
<td>386</td>
<td>n AXIS : DATA TRANS. ERROR (EXT)</td>
<td>A CRC or stop bit error occurred in the communication data being received.</td>
</tr>
<tr>
<td>387</td>
<td>n AXIS : ABNORMAL ENCODER (EXT)</td>
<td>An error occurs in the separate detector. For details, contact the manufacturer of the scale.</td>
</tr>
</tbody>
</table>

- The details of serial pulse coder alarm

<table>
<thead>
<tr>
<th>202</th>
<th>#7</th>
<th>#6</th>
<th>#5</th>
<th>#4</th>
<th>#3</th>
<th>#2</th>
<th>#1</th>
<th>#0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTE</td>
<td>CS</td>
<td>B</td>
<td>PA</td>
<td>CA</td>
<td>BA</td>
<td>C</td>
<td>SP</td>
<td>H</td>
</tr>
</tbody>
</table>

#6 (CSA) : Check sum alarm has occurred.
#5 (BLA) : Battery low alarm has occurred.
#4 (PHA) : Phase data trouble alarm has occurred.
#3 (PCA) : Speed count trouble alarm has occurred.
#2 (BZA) : Battery zero alarm has occurred.
#1 (CKA) : Clock alarm has occurred.
#0 (SPH) : Soft phase data trouble alarm has occurred.

<table>
<thead>
<tr>
<th>203</th>
<th>#7</th>
<th>#6</th>
<th>#5</th>
<th>#4</th>
<th>#3</th>
<th>#2</th>
<th>#1</th>
<th>#0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTE</td>
<td>CR</td>
<td>ST</td>
<td>PR</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#7 (DTE) : Data error has occurred.
#6 (CRC) : CRC error has occurred.
#5 (STB) : Stop bit error has occurred.
#4 (PRM) : Parameter error alarm has occurred. In this case, a servo parameter error alarm (No. 417) is also output.
5) Servo alarms (1/2)

<table>
<thead>
<tr>
<th>Number</th>
<th>Message</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>401</td>
<td>SERVO ALARM: n–TH AXIS VRDY OFF</td>
<td>The n–th axis (axis 1–8) servo amplifier READY signal (DRDY) went off. Refer to procedure of trouble shooting.</td>
</tr>
<tr>
<td>402</td>
<td>SERVO ALARM: SV CARD NOT EXIST</td>
<td>The axis control card is not provided.</td>
</tr>
</tbody>
</table>
| 403 | SERVO ALARM: CARD/SOFT MISMATCH | The combination of the axis control card and servo software is illegal. The possible causes are as follows:
 - A correct axis control card is not provided.
 - Correct servo software is not installed on flash memory. |
| 404 | SERVO ALARM: n–TH AXIS VRDY ON | Even though the n–th axis (axis 1–8) READY signal (MCON) went off, the servo amplifier READY signal (DRDY) is still on. Or, when the power was turned on, DRDY went on even though MCON was off. Check that the servo interface module and servo amp are connected. |
| 405 | SERVO ALARM: (ZERO POINT RETURN FAULT) | Position control system fault. Due to an NC or servo system fault in the reference position return, there is the possibility that reference position return could not be executed correctly. Try again from the manual reference position return. |
| 409 | SERVO ALARM: n AXIS TORQUE ALM | Abnormal servo motor load has been detected. Alternatively, abnormal spindle motor load has been detected in Cs mode. |
| 410 | SERVO ALARM: n–TH AXIS – EXCESS ERROR | The position deviation value when the n–th axis (axis 1–8) stops is larger than the set value. Refer to procedure of trouble shooting. |
| 411 | SERVO ALARM: n–TH AXIS – EXCESS ERROR | The position deviation value when the n–th axis (axis 1–8) moves is larger than the set value. Refer to procedure of trouble shooting. |
| 413 | SERVO ALARM: n–th AXIS – LSI OVERFLOW | The contents of the error register for the n–th axis (axis 1–8) exceeded \(2^{31}\) power. This error usually occurs as the result of an improperly set parameters. |
| 415 | SERVO ALARM: n–TH AXIS – EXCESS SHIFT | A speed higher than \(524288000\) units/s was attempted to be set in the n–th axis (axis 1–8). This error occurs as the result of improperly set CMR. |
| 417 | SERVO ALARM: n–TH AXIS – PARAMETER INCORRECT | This alarm occurs when the n–th axis (axis 1–8) is in one of the conditions listed below. (Digital servo system alarm)
 1) The value set in Parameter No. 2020 (motor form) is out of the specified limit.
 2) A proper value (111 or −111) is not set in parameter No.2022 (motor revolution direction).
 3) Illegal data (a value below 0, etc.) was set in parameter No. 2023 (number of speed feedback pulses per motor revolution).
 4) Illegal data (a value below 0, etc.) was set in parameter No. 2024 (number of position feedback pulses per motor revolution).
 5) Parameters No. 2084 and No. 2085 (flexible field gear rate) have not been set.
 6) A value outside the limit of [1 to the number of control axes] or a non-continuous value (Parameter 1023 (servo axis number) contains a value out of the range from 1 to the number of axes, or an isolated value (for example, 4 not preceded by 3).was set in parameter No. 1023 (servo axis number). |
<p>| 421 | SERVO ALARM: n AXIS EXCESS ER (D) | The difference between the errors in the semi-closed loop and closed loop has become excessive during dual position feedback. Check the values of the dual position conversion coefficients in parameters No. 2078 and 2079. |</p>
<table>
<thead>
<tr>
<th>Number</th>
<th>Message</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>422</td>
<td>SERVO ALARM: n AXIS</td>
<td>In torque control of PMC axis control, a specified allowable speed has been exceeded.</td>
</tr>
<tr>
<td>423</td>
<td>SERVO ALARM: n AXIS</td>
<td>In torque control of PMC axis control, the parameter–set allowable cumulative travel distance has been exceeded.</td>
</tr>
<tr>
<td>430</td>
<td>n AXIS : SV. MOTOR OVERHEAT</td>
<td>A servo motor overheat occurred.</td>
</tr>
</tbody>
</table>
| 431 | n AXIS : CNV. OVERLOAD | 1) PSM: Overheat occurred.
2) β series SVU: Overheat occurred. |
| 432 | n AXIS : CNV. LOW VOLT CONTROL | 1) PSMR: The control power supply voltage has dropped.
2) α series SVU: The control power supply voltage has dropped. |
| 433 | n AXIS : CNV. LOW VOLT DC LINK | 1) PSM: The DC link voltage has dropped.
2) PSMR: The DC link voltage has dropped.
3) α series SVU: The DC link voltage has dropped.
4) β series SVU: The DC link voltage has dropped. |
| 434 | n AXIS : INV. LOW VOLT CONTROL | SVM: The control power supply voltage has dropped. |
| 435 | n AXIS : INV. LOW VOLT DC LINK | SVM: The DC link voltage has dropped. |
| 436 | n AXIS : SOFT THERMAL (OVC) | The digital servo software detected the soft thermal state (OVC). |
| 437 | n AXIS : CNV. OVERCURRENT POWER | PSM: Overcurrent flowed into the input circuit. |
| 438 | n AXIS : INV. ABNORMAL CURRENT | 1) SVM: The motor current is too high.
2) α series SVU: The motor current is too high.
3) β series SVU: The motor current is too high. |
| 439 | n AXIS : CNV. OVER VOLT DC LINK | 1) PSM: The DC link voltage is too high.
2) PSMR: The DC link voltage is too high.
3) α series SVU: The C link voltage is too high.
4) β series SVU: The link voltage is too high. |
| 440 | n AXIS : CNV. EX DECELERATION POWER | 1) PSM: The regenerative discharge amount is too large.
2) α series SVU: The regenerative discharge amount is too large. Alternatively, the regenerative discharge circuit is abnormal. |
| 441 | n AXIS : ABNORMAL CURRENT OFFSET | The digital servo software detected an abnormality in the motor current detection circuit. |
| 442 | n AXIS : CNV. CHARGE FAILURE | 1) PSM: The spare discharge circuit of the DC link is abnormal.
2) PSMR: The spare discharge circuit of the DC link is abnormal. |
| 443 | n AXIS : CNV. COOLING FAN FAILURE | 1) PSM: The internal stirring fan failed.
2) PSMR: The internal stirring fan failed.
3) β series SVU: The internal stirring fan failed. |
| 444 | n AXIS : INV. COOLING FAN FAILURE | SVM: The internal stirring fan failed. |
| 445 | n AXIS : SOFT DISCONNECT ALARM | The digital servo software detected a broken wire in the pulse coder. |
| 446 | n AXIS : HARD DISCONNECT ALARM | A broken wire in the built-in pulse coder was detected by hardware. |
| 447 | n AXIS : HARD DISCONNECT (EXT) | A broken wire in the separate detector was detected by hardware. |
| 448 | n AXIS : UNMATCHED FEEDBACK ALARM | The sign of feedback data from the built-in pulse coder differs from that of feedback data from the separate detector. |
| 449 | n AXIS : INV. IPM ALARM | 1) SVM: IPM (intelligent power module) detected an alarm.
2) α series SVU: IPM (intelligent power module) detected an alarm. |
<table>
<thead>
<tr>
<th>Number</th>
<th>Message</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>453</td>
<td>n AXIS : SPC SOFT DISCONNECT ALARM</td>
<td>Software disconnection alarm of the α pulse coder. Turn off the power to the CNC, then remove and insert the pulse coder cable. If this alarm is issued again, replace the pulse coder.</td>
</tr>
<tr>
<td>456</td>
<td>n AXIS : ILLEGAL CURRENT LOOP</td>
<td>An illegal current control period was specified. The amplifier pulse module in use does not match high-speed HRV. Alternatively, the system does not satisfy a constraint for performing high-speed HRV control.</td>
</tr>
<tr>
<td>457</td>
<td>n AXIS : ILLEGAL HI HRV (250US)</td>
<td>It is specified that, when the current control period is 250 ms, high-speed HRV control is to be used.</td>
</tr>
<tr>
<td>458</td>
<td>n AXIS : CURRENT LOOP ERROR</td>
<td>The specified current control period dose not match the actual current control period.</td>
</tr>
<tr>
<td>459</td>
<td>n AXIS : HI HRV SETTING ERROR</td>
<td>In a pair of axes in which one axis has an odd servo axis number (parameter No. 1023) and the other has an even servo axis number that is adjacent to the odd servo axis number, high-speed HRV control is supported for one of the axes and not supported for the other axis.</td>
</tr>
<tr>
<td>460</td>
<td>n AXIS : FSSB DISCONNECT</td>
<td>FSSB communication was disconnected suddenly. The possible causes are as follows: 1) The FSSB communication cable was disconnected or broken. 2) The power to the amplifier was turned off suddenly. 3) A low-voltage alarm was issued by the amplifier.</td>
</tr>
<tr>
<td>461</td>
<td>n AXIS : ILLEGAL AMP INTERFACE</td>
<td>The axes of the 2–axis amplifier were assigned to the fast type interface.</td>
</tr>
<tr>
<td>462</td>
<td>n AXIS : SEND CNC DATA FAILED</td>
<td>Because of an FSSB communication error, a slave could not receive correct data.</td>
</tr>
<tr>
<td>463</td>
<td>n AXIS : SEND SLAVE DATA FAILED</td>
<td>Because of an FSSB communication error, the servo system could not receive correct data.</td>
</tr>
<tr>
<td>464</td>
<td>n AXIS : WRITE ID DATA FAILED</td>
<td>An attempt was made to write maintenance information on the amplifier maintenance screen, but it failed.</td>
</tr>
<tr>
<td>465</td>
<td>n AXIS : READ ID DATA FAILED</td>
<td>At power–up, amplifier initial ID information could not be read.</td>
</tr>
<tr>
<td>466</td>
<td>n AXIS : MOTOR/AMP COMBINATION</td>
<td>The maximum current rating for the amplifier does not match that for the motor.</td>
</tr>
<tr>
<td>467</td>
<td>n AXIS : ILLEGAL SETTING OF AXIS</td>
<td>The servo function for the following has not been enabled when an axis occupying a single DSP (corresponding to two ordinary axes) is specified on the axis setting screen. 1. Learning control (bit 5 of parameter No. 2008 = 1) 2. High–speed current loop (bit 0 of parameter No. 2004 = 1) 3. High–speed interface axis (bit 4 of parameter No. 2005 = 1)</td>
</tr>
<tr>
<td>468</td>
<td>n AXIS : HI HRV SETTING ERROR (AMP)</td>
<td>This alarm is issued if it is specified that high–speed HRV control is to be used for a controlled axis connected to an amplifier for which high–speed HRV control cannot be used.</td>
</tr>
</tbody>
</table>

Details of servo alarm

The details of servo alarm are displayed in the diagnosis display (No. 200 and No. 204) as shown below.

<table>
<thead>
<tr>
<th>No.</th>
<th>#7</th>
<th>#6</th>
<th>#5</th>
<th>#4</th>
<th>#3</th>
<th>#2</th>
<th>#1</th>
<th>#0</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>OVL</td>
<td>LV</td>
<td>OVC</td>
<td>HCA</td>
<td>HVA</td>
<td>DCA</td>
<td>FBA</td>
<td>OFA</td>
</tr>
</tbody>
</table>

#7 (OVL) : An overload alarm is being generated.
#6 (LV) : A low voltage alarm is being generated in servo amp.
#5 (OVC) : A overcurrent alarm is being generated inside of digital servo.
#4 (HCA) : An abnormal current alarm is being generated in servo amp.
#3 (HVA) : An overvoltage alarm is being generated in servo amp.
#2 (DCA) : A regenerative discharge circuit alarm is being generated in servo amp.
#1 (FBA) : A disconnection alarm is being generated.
#0 (OFA) : An overflow alarm is being generated inside of digital servo.

<table>
<thead>
<tr>
<th>201</th>
<th>ALD</th>
<th>EXP</th>
</tr>
</thead>
</table>

When OVL equal 1 in diagnostic data No.200 (servo alarm No. 400 is being generated):

#7 (ALD) 0 : Motor overheating
1 : Amplifier overheating

When FBAL equal 1 in diagnostic data No.200 (servo alarm No. 416 is being generated):

<table>
<thead>
<tr>
<th>ALD</th>
<th>EXP</th>
<th>Alarm details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>Built–in pulse coder disconnection (hardware)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Separately installed pulse coder disconnection (hardware)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>Pulse coder is not connected due to software.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>204</th>
<th>OFS</th>
<th>MCC</th>
<th>LDA</th>
<th>PMS</th>
</tr>
</thead>
</table>

#6 (OFS) : A current conversion error has occurred in the digital servo.
#5 (MCC) : A magnetic contactor contact in the servo amplifier has welded.
#4 (LDA) : The LED indicates that serial pulse coder C is defective.
#3 (PMS) : A feedback pulse error has occurred because the feedback cable is defective.

6) Over travel alams

<table>
<thead>
<tr>
<th>Number</th>
<th>Message</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>OVER TRAVEL : +n</td>
<td>Exceeded the n–th axis + side stored stroke limit I. (Parameter No.1320 or 1326 Notes)</td>
</tr>
<tr>
<td>501</td>
<td>OVER TRAVEL : −n</td>
<td>Exceeded the n–th axis – side stored stroke limit I. (Parameter No.1321 or 1327 Notes)</td>
</tr>
<tr>
<td>502</td>
<td>OVER TRAVEL : +n</td>
<td>Exceeded the n–th axis + side stored stroke limit II. (Parameter No.1322)</td>
</tr>
<tr>
<td>503</td>
<td>OVER TRAVEL : −n</td>
<td>Exceeded the n–th axis – side stored stroke limit II. (Parameter No.1323)</td>
</tr>
<tr>
<td>504</td>
<td>OVER TRAVEL : +n</td>
<td>Exceeded the n–th axis + side stored stroke limit III. (Parameter No.1324)</td>
</tr>
<tr>
<td>505</td>
<td>OVER TRAVEL : −n</td>
<td>Exceeded the n–th axis – side stored stroke limit III. (Parameter No.1325)</td>
</tr>
<tr>
<td>506</td>
<td>OVER TRAVEL : +n</td>
<td>Exceeded the n–th axis + side hardware OT.</td>
</tr>
<tr>
<td>507</td>
<td>OVER TRAVEL : −n</td>
<td>Exceeded the n–th axis – side hardware OT.</td>
</tr>
</tbody>
</table>

NOTE

Over travel alarms No. 504 and No. 505 are provided only with the T series.
Parameters 1326 and 1327 are effective when EXLM(stroke limit switch signal) is on.
7) Servo alarms

<table>
<thead>
<tr>
<th>Number</th>
<th>Message</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>n AXIS : INV. DC LINK OVER CURRENT</td>
<td>SVM: The DC link current is too high.
SVU: The DC link current is too high.</td>
</tr>
<tr>
<td>601</td>
<td>n AXIS : INV. RADIATOR FAN FAILURE</td>
<td>SVM: The heat sink cooling fan is defective.
SVU: The heat sink cooling fan is defective.</td>
</tr>
<tr>
<td>602</td>
<td>n AXIS : INV. OVERHEAT</td>
<td>SVM: The servo amplifier is overheated.</td>
</tr>
<tr>
<td>603</td>
<td>n AXIS : INV. IPM ALARM (OH)</td>
<td>SVM: The IPM (intelligent power module) has detected an overheat alarm condition.
SVU: The IPM (intelligent power module) has detected an overheat alarm condition.</td>
</tr>
<tr>
<td>604</td>
<td>n AXIS : AMP. COMMUNICATION ERROR</td>
<td>Communication between the SVM and PSM is abnormal.</td>
</tr>
<tr>
<td>605</td>
<td>n AXIS : CNV. EX. DISCHARGE POW.</td>
<td>PSMR: The motor regenerative power is too high.</td>
</tr>
<tr>
<td>606</td>
<td>n AXIS : CNV. RADIATOR FAN FAILURE</td>
<td>PSM: The fan for cooling the external heat sink is defective.
PSMR: The fan for cooling the external heat sink is defective.</td>
</tr>
<tr>
<td>607</td>
<td>n AXIS : CNV. SINGLE PHASE FAILURE</td>
<td>PSM: One of the input power phases is abnormal.
PSMR: One of the input power phases is abnormal.</td>
</tr>
</tbody>
</table>

8) Overheat alarms

<table>
<thead>
<tr>
<th>Number</th>
<th>Message</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>700</td>
<td>OVERHEAT: CONTROL UNIT</td>
<td>Control unit overheat
Check that the fan motor operates normally, and clean the air filter.</td>
</tr>
<tr>
<td>701</td>
<td>OVERHEAT: FAN MOTOR</td>
<td>The fan motor on the top of the cabinet for the control unit is overheated.
Check the operation of the fan motor and replace the motor if necessary.</td>
</tr>
<tr>
<td>704</td>
<td>OVERHEAT: SPINDLE</td>
<td>Spindle overheat in the spindle fluctuation detection
(1) If the cutting load is heavy, relieve the cutting condition.
(2) Check whether the cutting tool is share.
(3) Another possible cause is a faulty spindle amp.</td>
</tr>
</tbody>
</table>

9) Rigid tapping alarm

<table>
<thead>
<tr>
<th>Number</th>
<th>Message</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>740</td>
<td>RIGID TAP ALARM : EXCESS ERROR</td>
<td>During rigid tapping, the position deviation of the spindle in the stop state exceeded the setting.</td>
</tr>
<tr>
<td>741</td>
<td>RIGID TAP ALARM : EXCESS ERROR</td>
<td>During rigid tapping, the position deviation of the spindle in the stop state exceeded the setting.</td>
</tr>
<tr>
<td>742</td>
<td>RIGID TAP ALARM : LSI OVER FLOW</td>
<td>During rigid tapping, an LSI overflow occurred on the spindle side.</td>
</tr>
</tbody>
</table>
10) Spindle alarms

<table>
<thead>
<tr>
<th>Number</th>
<th>Message</th>
<th>Contents</th>
</tr>
</thead>
</table>
| 749 | S–SPINDLE LSI ERROR | It is serial communication error while system is executing after power supply on. Following reasons can be considered.
1) Optical cable connection is fault or cable is not connected or cable is cut.
2) MAIN CPU board or option 2 board is fault.
3) Spindle amp. printed board is fault.
If this alarm occurs when CNC power supply is turned on or when this alarm can not be cleared even if CNC is reset, turn off the power supply also turn off the power supply in spindle side. |
| 750 | SPINDLE SERIAL LINK START FAULT | This alarm is generated when the spindle control unit is not ready for starting correctly when the power is turned on in the system with the serial spindle.
The four reasons can be considered as follows:
1) An improperly connected optic cable, or the spindle control unit’s power is OFF.
2) When the NC power was turned on under alarm conditions other than SU–01 or AL–24 which are shown on the LED display of the spindle control unit.
In this case, turn the spindle amplifier power off once and perform startup again.
3) Other reasons (improper combination of hardware)
This alarm does not occur after the system including the spindle control unit is activated.
4) The second spindle (when SP2, bit 4 of parameter No. 3701, is 1) is in one of the above conditions 1) to 3).
See diagnostic display No. 409 for details. |
| 752 | FIRST SPINDLE MODE CHANGE FAULT | This alarm is generated if the system does not properly terminate a mode change. The modes include the Cs contouring, spindle positioning, rigid tapping, and spindle control modes. The alarm is activated if the spindle control unit does not respond correctly to the mode change command issued by the NC. |
| 754 | SPINDLE–1 ABNORMAL TORQUE ALM | Abnormal first spindle motor load has been detected. |
| 762 | SECOND SPINDLE MODE CHANGE FAULT | Refer to alarm No. 752. (For 2nd axis) |
| 764 | SPINDLE–2 ABNORMAL TORQUE ALM | Same as alarm No. 754 (for the second spindle) |

The details of spindle alarm No.750

The details of spindle alarm No. 750 are displayed in the diagnosis display (No. 409) as shown below.

<table>
<thead>
<tr>
<th>409</th>
<th>#7</th>
<th>#6</th>
<th>#5</th>
<th>#4</th>
<th>#3</th>
<th>#2</th>
<th>#1</th>
<th>#0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SPE</td>
<td>S2E</td>
<td>S1E</td>
<td>SHE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#3 (SPE)
0 : In the spindle serial control, the serial spindle parameters fulfill the spindle unit startup conditions.
1 : In the spindle serial control, the serial spindle parameters do not fulfill the spindle unit startup conditions.

#2 (S2E)
0 : The second spindle is normal during the spindle serial control startup.
1 : The second spindle was detected to have a fault during the spindle serial control startup.
#1 (S1E) 0: The first spindle is normal during the spindle serial control startup.
1: The first spindle was detected to have a fault during the spindle axis serial control startup.

#0 (SHE) 0: The serial communications module in the CNC is normal.
1: The serial communications module in the CNC was detected to have a fault.

Alarm List (Serial Spindle)

When a serial spindle alarm occurs, the following number is displayed on the CNC. \(n \) is a number corresponding to the spindle on which an alarm occurs. \(n = 1: \) First spindle; \(n = 2: \) Second spindle; etc.)

NOTE¹

Note that the meanings of the SPM indications differ depending on which LED, the red or yellow LED, is on. When the red LED is on, the SPM indicates a 2-digit alarm number. When the yellow LED is on, the SPM indicates an error number that designates a sequence problem (for example, when a rotation command is entered with the emergency stop state not released).

→ See “Error Codes (Serial Spindle).”

Alarm Numbers and Alarms Displayed on the \(\alpha \) Series Spindle Amplifier

<table>
<thead>
<tr>
<th>No.</th>
<th>Message</th>
<th>SPM indication(*1)</th>
<th>Faulty location and remedy</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(750)</td>
<td>SPINDLE SERIAL LINK ERROR</td>
<td>A0 A</td>
<td>1 Replace the ROM on the SPM control printed circuit board.</td>
<td>The program does not start normally. ROM series error or hardware abnormality on the SPM control printed circuit board</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 Replace the SPM control printed circuit board.</td>
<td></td>
</tr>
<tr>
<td>(749)</td>
<td>S–SPINDLE LSI ERROR</td>
<td>A1</td>
<td>Replace the SPM control printed circuit board.</td>
<td>An abnormality was detected in the CPU peripheral circuit of the SPM control circuit.</td>
</tr>
<tr>
<td>7n01</td>
<td>SPN_(n) : MOTOR OVERHEAT</td>
<td>01</td>
<td>1 Check and correct the peripheral temperature and load status.</td>
<td>The thermostat embedded in the motor winding operated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 If the cooling fan stops, replace it.</td>
<td>The internal temperature of the motor exceeds the specified level.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The motor is used in excess of the continuous rating, or the cooling component is abnormal.</td>
</tr>
<tr>
<td>7n02</td>
<td>SPN_(n) : EX SPEED ERROR</td>
<td>02</td>
<td>1 Check and correct the cutting conditions to decrease the load.</td>
<td>The motor speed cannot follow a specified speed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 Correct parameter No. 4082.</td>
<td>An excessive motor load torque is detected.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The acceleration/deceleration time in parameter No. 4082 is insufficient.</td>
</tr>
<tr>
<td>No.</td>
<td>Message</td>
<td>SPM indication(*1)</td>
<td>Faulty location and remedy</td>
<td>Description</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>--------------------</td>
<td>----------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>7n03</td>
<td>SPN_n_ : FUSE ON DC LINK BLOWN</td>
<td>03</td>
<td>1. Replace the SPM unit. 2. Check the motor insulation status. 3. Replace the interface cable.</td>
<td>The PSM becomes ready (00 is indicated), but the DC link voltage is too low in the SPM. The fuse in the DC link section in the SPM is blown. (The power device is damaged or the motor is ground–fault.) The JX1A/JX1B connection cable is abnormal.</td>
</tr>
<tr>
<td>7n04</td>
<td>SPN_n_ : INPUT FUSE/POWER FAULT</td>
<td>04</td>
<td>Check the state of the input power supply to the PSM.</td>
<td>The PSM found a missing power supply phase. (PSM alarm 5)</td>
</tr>
<tr>
<td>7n06</td>
<td>SPN_n_ : THERMAL SENSOR DISCONNECT</td>
<td>06</td>
<td>1. Check and correct the parameter. 2. Replace the feedback cable.</td>
<td>The temperature sensor of the motor is disconnected.</td>
</tr>
<tr>
<td>7n07</td>
<td>SPN_n_ : OVERSPEED</td>
<td>07</td>
<td>Check for a sequence error. (For example, check whether spindle synchronization was specified when the spindle could not be turned.)</td>
<td>The motor speed has exceeded 115% of its rated speed. When the spindle axis was in position control mode, positional deviations were accumulated excessively (SFR and SRV were turned off during spindle synchronization.)</td>
</tr>
<tr>
<td>7n09</td>
<td>SPN_n_ : OVERHEAT MAIN CIRCUIT</td>
<td>09</td>
<td>1. Improve the heat sink cooling status. 2. If the heat sink cooling fan stops, replace the SPM unit.</td>
<td>Abnormal temperature rise of the power transistor radiator</td>
</tr>
<tr>
<td>7n11</td>
<td>SPN_n_ : OVERVOLT POW CIRCUIT</td>
<td>11</td>
<td>1. Check the selected PSM. 2. Check the input power voltage and change in power during motor deceleration. If the voltage exceeds 253 VAC (for the 200–V system) or 530 VAC (for the 400–V system), improve the power supply impedance.</td>
<td>Overvoltage of the DC link section of the PSM was detected. (PSM alarm indication: 7) PSM selection error. (The maximum output specification of the PSM is exceeded.)</td>
</tr>
<tr>
<td>7n12</td>
<td>SPN_n_ : OVERCURRENT POW CIRCUIT</td>
<td>12</td>
<td>1. Check the motor insulation status. 2. Check the spindle parameters. 3. Replace the SPM unit.</td>
<td>The motor output current is abnormally high. A motor–specific parameter does not match the motor model. Poor motor insulation</td>
</tr>
<tr>
<td>7n15</td>
<td>SPN_n_ : SP SWITCH CONTROL ALARM</td>
<td>15</td>
<td>1. Check and correct the ladder sequence. 2. Replace the switching MC.</td>
<td>The switch sequence in spindle switch/output switch operation is abnormal. The switching MC contact status check signal and command do not match.</td>
</tr>
<tr>
<td>7n16</td>
<td>SPN_n_ : RAM FAULT</td>
<td>16</td>
<td>Replace the SPM control printed circuit board.</td>
<td>Abnormality in an SPM control circuit component is detected. (RAM for external data is abnormal.)</td>
</tr>
<tr>
<td>7n18</td>
<td>SPN_n_ : SUMCHECK ERROR PGM DATA</td>
<td>18</td>
<td>Replace the SPM control printed circuit board.</td>
<td>Abnormality in an SPM control circuit component is detected. (Program ROM data is abnormal.)</td>
</tr>
<tr>
<td>No.</td>
<td>Message</td>
<td>SPM indication(*)</td>
<td>Faulty location and remedy</td>
<td>Description</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>-------------------</td>
<td>----------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>7n19</td>
<td>SPN_n_ : EX OFFSET CURRENT U</td>
<td>19</td>
<td>Replace the SPM unit.</td>
<td>Abnormality in an SPM component is detected. (The initial value for the U phase current detection circuit is abnormal.)</td>
</tr>
<tr>
<td>7n20</td>
<td>SPN_n_ : EX OFFSET CURRENT V</td>
<td>20</td>
<td>Replace the SPM unit.</td>
<td>Abnormality in an SPM component is detected. (The initial value of the V phase current detection circuit is abnormal.)</td>
</tr>
<tr>
<td>7n21</td>
<td>SPN_n_ : POS SENSOR POLARITY ERROR</td>
<td>21</td>
<td>Check and correct the parameters. (No. 4000#0, 4001#4)</td>
<td>The polarity parameter setting of the position sensor is wrong.</td>
</tr>
<tr>
<td>7n24</td>
<td>SPN_n_ : SERIAL TRANSFER ERROR</td>
<td>24</td>
<td>1 Place the CNC–spindle cable away from the power cable. 2 Replace the cable.</td>
<td>The CNC power is turned off (normal power–off or broken cable). An error is detected in communication data transferred to the CNC.</td>
</tr>
<tr>
<td>7n26</td>
<td>SPN_n_ : DISCONNECT C–VELO DETECT</td>
<td>26</td>
<td>1 Replace the cable. 2 Re–adjust the pre–amplifier.</td>
<td>The signal amplitude of the detection signal (connector JY2) on the Cs contour control motor side is abnormal. (Unconnected cable, adjustment error, etc.)</td>
</tr>
<tr>
<td>7n27</td>
<td>SPN_n_ : DISCONNECT POS–CODER</td>
<td>27</td>
<td>1 Replace the cable. 2 Re–adjust the BZ sensor signal.</td>
<td>1 The spindle position coder (connector JY4) signal is abnormal. 2 The signal amplitude (connector JY2) of the MZ or BZ sensor is abnormal. (Unconnected cable, adjustment error, etc.)</td>
</tr>
<tr>
<td>7n28</td>
<td>SPN_n_ : DISCONNECT C–POS DETECT</td>
<td>28</td>
<td>1 Replace the cable 2 Re–adjust the pre–amplifier.</td>
<td>The position detection signal (connector JY5) for Cs contour control is abnormal. (Unconnected cable, adjustment error, etc.)</td>
</tr>
<tr>
<td>7n29</td>
<td>SPN_n_ : SHORTTIME OVERLOAD</td>
<td>29</td>
<td>Check and correct the load status.</td>
<td>Excessive load has been applied continuously for a certain period of time. (This alarm is issued also when the motor shaft has been locked in the excitation state.)</td>
</tr>
<tr>
<td>7n30</td>
<td>SPN_n_ : OVERCURRENT POW CIRCUIT</td>
<td>30</td>
<td>Check and correct the power supply voltage.</td>
<td>Overcurrent is detected in PSM main circuit input. (PSM alarm indication: 1 Unbalanced power supply. PSM selection error (The maximum PSM output specification is exceeded.)</td>
</tr>
<tr>
<td>7n31</td>
<td>SPN_n_ : MOTOR LOCK OR V–SIG LOS</td>
<td>31</td>
<td>1 Check and correct the load status. 2 Replace the motor sensor cable (JY2 or JY5).</td>
<td>The motor cannot rotate at a specified speed. (A level not exceeding the SST level for the rotation command has existed continuously.) Abnormality in the speed detection signal.</td>
</tr>
<tr>
<td>No.</td>
<td>Message</td>
<td>SPM indication(*1)</td>
<td>Faulty location and remedy</td>
<td>Description</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>-------------------</td>
<td>-----------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>7n32</td>
<td>SPN_n_: RAM FAULT SERIAL LSI</td>
<td>32</td>
<td>Replace the SPM control printed circuit board.</td>
<td>Abnormality in an SPM control circuit component is detected. (The LSI device for serial transfer is abnormal.)</td>
</tr>
</tbody>
</table>
| 7n33 | SPN_n_: SHORTAGE POWER CHARGE | 33 | 1. Check and correct the power supply voltage.
2. Replace the PSM unit. | Charging of direct current power supply voltage in the power circuit section is insufficient when the magnetic contractor in the amplifier is turned on (such as open phase and defective charging resistor). |
| 7n34 | SPN_n_: PARAMETER SETTING ERROR | 34 | Correct a parameter value according to the manual.
If the parameter number is unknown, connect the spindle check board, and check the indicated parameter. | Parameter data exceeding the allowable limit is set. |
| 7n35 | SPN_n_: EX SETTING GEAR RATIO | 35 | Correct the value according to the parameter manual. | Gear ratio data exceeding the allowable limit is set. |
| 7n36 | SPN_n_: OVERFLOW ERROR COUNTER | 36 | Check whether the position gain value is too large, and correct the value. | An error counter overflow occurred. |
| 7n37 | SPN_n_: SPEED DETECT PAR. ERROR | 37 | Correct the value according to the parameter manual. | The setting of the parameter for the number of pulses in the speed detector is incorrect. |
| 7n39 | SPN_n_: 1–ROT Cs SIGNAL ERROR | 39 | 1. Adjust the 1–rotation signal in the pre–amplifier.
2. Check the cable shield status.
3. Replace the cable. | An incorrect relationship between the 1–rotation signal and the number of AB phase pulses was detected during Cs contour control. |
| 7n40 | SPN_n_: NO 1–ROT Cs SIGNAL DETECT | 40 | 1. Adjust the 1–rotation signal in the pre–amplifier.
2. Check the cable shield status.
3. Replace the cable. | The 1–rotation signal is not generated during Cs contour control. |
| 7n41 | SPN_n_: 1–ROT POS–CODER ERROR | 41 | 1. Check and correct the parameter.
2. Replace the cable.
3. Re–adjust the BZ sensor signal. | 1. The 1–rotation signal of the spindle position coder (connector JY4) is abnormal.
2. The 1–rotation signal (connector JY2) of the MZ or BZ sensor is abnormal.
3. Parameter setting error |
| 7n42 | SPN_n_: NO 1–ROT. POS–CODER DETECT | 42 | 1. Replace the cable.
2. Re–adjust the BZ sensor signal. | 1. The 1–rotation signal of the spindle position coder (connector JY4) is disconnected.
2. The 1–rotation signal (connector JY2) of the MZ or BZ sensor is disconnected.
3. Parameter setting error |
<p>| 7n43 | SPN_n_: DISCON. PC FOR DIF. SP. MODE | 43 | Replace the cable. | The differential speed position coder signal (connector JY8) in SPM type 3 is abnormal. |
| 7n44 | SPN_n_: CONTROL CIRCUIT(AD) ERROR | 44 | Replace the SPM control printed circuit board. | Abnormality in an SPM control circuit component was detected (A/D converter abnormality). |</p>
<table>
<thead>
<tr>
<th>No.</th>
<th>Message</th>
<th>SPM indication(*1)</th>
<th>Faulty location and remedy</th>
<th>Description</th>
</tr>
</thead>
</table>
| 7n46 | SPN_n_ : SCREW 1—ROT POS—COD. ALARM | 46 | 1 Check and correct the parameter.
2 Replace the cable.
3 Re—adjust the BZ sensor signal. | An abnormality equivalent to alarm 41 was detected during thread cutting operation. |
| 7n47 | SPN_n_ : POS—CODER SIGNAL ABNORMAL | 47 | 1 Replace the cable.
2 Re—adjust the BZ sensor signal.
3 Correct the cable layout (vicinity of the power line). | 1 The A/B phase signal of the spindle position coder (connector JY4) is abnormal.
2 The A/B phase signal (connector JY2) of the MZ or BZ sensor is abnormal.
The relationship between the A/B phase and 1—rotation signal is incorrect (Pulse interval mismatch). |
| 7n49 | SPN_n_ : HIGH CONV. DIF. SPEED | 49 | Check whether the calculated differential speed value exceeds the maximum motor speed. | In differential speed mode, the speed of the other spindle converted to the speed of the local spindle has exceeded the allowable limit (the differential speed is calculated by multiplying the speed of the other spindle by the gear ratio). |
| 7n50 | SPN_n_ : SPNDL CONTROL OVER-SPEED | 50 | Check whether the calculated value exceeds the maximum motor speed. | In spindle synchronization, the speed command calculation value exceeded the allowable limit (the motor speed is calculated by multiplying the specified spindle speed by the gear ratio). |
| 7n51 | SPN_n_ : LOW VOLT DC LINK | 51 | 1 Check and correct the power supply voltage.
2 Replace the MC. | Input voltage drop was detected. (PSM alarm indication: 4) (Momentary power failure or poor MC contact) |
| 7n52 | SPN_n_ : ITP SIGNAL ABNORMAL I | 52 | 1 Replace the SPM control printed circuit board.
2 Replace the spindle interface printed circuit board in the CNC. | NC interface abnormality was detected (the ITP signal stopped). |
| 7n53 | SPN_n_ : ITP SIGNAL ABNORMAL II | 53 | 1 Replace the SPM control printed circuit board.
2 Replace the spindle interface printed circuit board in the CNC. | NC interface abnormality was detected (the ITP signal stopped). |
| 7n54 | SPN_n_ : OVERLOAD CURRENT | 54 | Review the load state. | An overload current was detected. |
| 7n55 | SPN_n_ : POWER LINE SWITCH ERROR | 55 | 1 Replace the magnetic contactor.
2 Check and correct the sequence. | The power line state signal of the magnetic contactor for selecting a spindle or output is abnormal. |
| 7n56 | SPN_n_ : INNER COOLING FAN STOP | 56 | Replace the SPM unit. | The cooling fan in the SPM control circuit stopped. |
| 7n57 | SPN_n_ : EX DECELERATION POWER | 57 | 1 Decrease the acceleration/deceleration duty.
2 Check the cooling condition (peripheral temperature).
3 If the cooling fan stops, replace the resistor.
4 If the resistance is abnormal, replace the resistor. | An overload was detected in the regenerative resistance. (PSMR alarm indication: 8) Thermostat operation or short—time overload was detected.
The regenerative resistor was disconnected, or an abnormal resistance was detected. |
<table>
<thead>
<tr>
<th>No.</th>
<th>Message</th>
<th>SPM indication((\text{*1}))</th>
<th>Faulty location and remedy</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7n58</td>
<td>SPN_n_ : OVERLOAD IN PSM</td>
<td>58</td>
<td>1. Check the PSM cooling status. 2. Replace the PSM unit.</td>
<td>The temperature of the radiator of the PSM has increased abnormally. (PSM alarm indication: 3)</td>
</tr>
<tr>
<td>7n59</td>
<td>SPN_n_ : COOLING FAN STOP IN PSM</td>
<td>59</td>
<td>Replace the SPM unit.</td>
<td>The cooling fan in the PSM stopped. (PSM alarm indication: 2)</td>
</tr>
<tr>
<td>7n62</td>
<td>SPN_n_ : MOTOR VCMD OVER-FLOWED</td>
<td>62</td>
<td>Check and correct the parameters. (No. 4021, 4056 to 4059)</td>
<td>The specified motor speed is too large.</td>
</tr>
<tr>
<td>7n66</td>
<td>SPN_n_ : AMP MODULE COMMUNICATION</td>
<td>66</td>
<td>1. Replace the cable. 2. Check and correct the connection.</td>
<td>An error was found in communication between amplifiers.</td>
</tr>
<tr>
<td>7n73</td>
<td>SPN_n_ : MOTOR SENSOR DISCONNECTED</td>
<td>73</td>
<td>1. Replace the feedback cable. 2. Check the shield processing. 3. Check and correct the connection. 4. Adjust the sensor.</td>
<td>The motor sensor feedback signal is not present.</td>
</tr>
<tr>
<td>7n74</td>
<td>SPN_n_ : CPU TEST ERROR</td>
<td>74</td>
<td>Replace the SPM control printed-circuit board.</td>
<td>An error was detected in a CPU test.</td>
</tr>
<tr>
<td>7n75</td>
<td>SPN_n_ : CRC ERROR</td>
<td>75</td>
<td>Replace the SPM control printed-circuit board.</td>
<td>An error was detected in a CRC test.</td>
</tr>
<tr>
<td>7n79</td>
<td>SPN_n_ : INITIAL TEST ERROR</td>
<td>79</td>
<td>Replace the SPM control printed-circuit board.</td>
<td>An error was detected in an initial test operation.</td>
</tr>
<tr>
<td>7n81</td>
<td>SPN_n_ : 1–ROT MOTOR SENSOR ERROR</td>
<td>81</td>
<td>1. Check and correct the parameter. 2. Replace the feedback cable. 3. Adjust the sensor.</td>
<td>The one–rotation signal of the motor sensor cannot be correctly detected.</td>
</tr>
<tr>
<td>7n82</td>
<td>SPN_n_ : NO 1–ROT MOTOR SENSOR</td>
<td>82</td>
<td>1. Replace the feedback cable. 2. Adjust the sensor.</td>
<td>The one–rotation signal of the motor sensor is not generated.</td>
</tr>
<tr>
<td>7n83</td>
<td>SPN_n_ : MOTOR SENSOR SIGNAL ERROR</td>
<td>83</td>
<td>1. Replace the feedback cable. 2. Adjust the sensor.</td>
<td>An irregularity was detected in a motor sensor feedback signal.</td>
</tr>
<tr>
<td>7n84</td>
<td>SPN_n_ : SPNDL SENSOR DISCONNECTED</td>
<td>84</td>
<td>1. Replace the feedback cable. 2. Check the shield processing. 3. Check and correct the connection. 4. Check and correct the parameter. 5. Adjust the sensor.</td>
<td>The spindle sensor feedback signal is not present.</td>
</tr>
<tr>
<td>7n85</td>
<td>SPN_n_ : 1–ROT SPNDL SENSOR ERROR</td>
<td>85</td>
<td>1. Check and correct the parameter. 2. Replace the feedback cable. 3. Adjust the sensor.</td>
<td>The one–rotation signal of the spindle sensor cannot be correctly detected.</td>
</tr>
<tr>
<td>7n86</td>
<td>SPN_n_ : NO 1–ROT SPNDL SENSOR ERROR</td>
<td>86</td>
<td>1. Replace the feedback cable. 2. Adjust the sensor.</td>
<td>The one–rotation signal of the spindle sensor is not generated.</td>
</tr>
<tr>
<td>7n87</td>
<td>SPN_n_ : SPNDL SENSOR SIGNAL ERROR</td>
<td>87</td>
<td>The one–rotation signal of the spindle sensor is not generated.</td>
<td>An irregularity was detected in a spindle sensor feedback signal.</td>
</tr>
<tr>
<td>No.</td>
<td>Message</td>
<td>SPM indication(*1)</td>
<td>Faulty location and remedy</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------------</td>
<td>--------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>7n88</td>
<td>SPN_n_ : COOLING RADIFAN FAILURE</td>
<td>88</td>
<td>Replace the SPM external cooling fan.</td>
<td>The external cooling fan stopped.</td>
</tr>
<tr>
<td>7n97</td>
<td>SPN_n_ : OTHER SPINDLE ALARM</td>
<td>97</td>
<td>Replace the SPM.</td>
<td>Another irregularity was detected.</td>
</tr>
<tr>
<td>7n98</td>
<td>SPN_n_ : OTHER CONVERTER ALARM</td>
<td>98</td>
<td>Check the PSM alarm display.</td>
<td>A PSM alarm was detected.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9n01</td>
<td>SPN_n_ : MOTOR OVERHEAT</td>
<td>01</td>
<td>1 Check and correct the peripheral temperature and load status.</td>
<td>The thermostat embedded in the motor winding</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 If the cooling fan stops, replace it.</td>
<td>operated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The internal temperature of the motor exceeds</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>the specified level.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The motor is used in excess of the continuous</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>rating, or the cooling component is abnormal.</td>
</tr>
<tr>
<td>9n02</td>
<td>SPN_n_ : EX SPEED ERROR</td>
<td>02</td>
<td>1 Check and correct the cutting conditions to decrease the load.</td>
<td>The motor speed cannot follow a specified speed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 Correct parameter No. 4082.</td>
<td>An excessive motor load torque is detected.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The acceleration/deceleration time in parameter</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No. 4082 is insufficient.</td>
</tr>
<tr>
<td>9n03</td>
<td>SPN_n_ : FUSE ON DC LINK BLOWN</td>
<td>03</td>
<td>1 Replace the SPM unit.</td>
<td>The PSM becomes ready (00 is indicated), but the</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 Check the motor insulation status.</td>
<td>DC link voltage is too low in the SPM.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 Replace the interface cable.</td>
<td>The fuse in the DC link section in the SPM is</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>blown. (The power device is damaged or the motor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>is ground-fault.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The JX1A/JX1B connection cable is abnormal.</td>
</tr>
<tr>
<td>9n04</td>
<td>SPN_n_ : INPUT FUSE/POWER FAULT</td>
<td>04</td>
<td>Check the state of the input power supply to the PSM.</td>
<td>The PSM found a missing power supply phase.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(PSM alarm 5)</td>
</tr>
<tr>
<td>9n06</td>
<td>SPN_n_ : THERMAL SENSOR DIS-CONNECT</td>
<td>06</td>
<td>1 Check and correct the parameter.</td>
<td>The temperature sensor of the motor is</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 Replace the feedback cable.</td>
<td>disconnected.</td>
</tr>
<tr>
<td>9n07</td>
<td>SPN_n_ : OVERSPEED</td>
<td>07</td>
<td>Check for a sequence error. (For example, check whether spindle</td>
<td>The motor speed has exceeded 115% of its rated</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>synchronization was specified when the spindle could not be</td>
<td>speed. When the spindle axis was in position</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>turned.)</td>
<td>control mode, positional deviations were</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>accumulated excessively (SFR and SRV were turned</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>off during spindle synchronization.)</td>
</tr>
<tr>
<td>No.</td>
<td>Message</td>
<td>SPN indication(*)</td>
<td>Faulty location and remedy</td>
<td>Description</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>------------------</td>
<td>---------------------------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| 9n09 | SPN_n_ : OVERHEAT MAIN CIRCUIT | 09 | 1 Improve the heat sink cooling status.
2 If the heat sink cooling fan stops, replace the SPM unit. | Abnormal temperature rise of the power transistor radiator |
| 9n11 | SPN_n_ : OVERVOLT POW CIRCUIT | 11 | 1 Check the selected PSM.
2 Check the input power voltage and change in power during motor deceleration. If the voltage exceeds 253 VAC (for the 200–V system) or 530 VAC (for the 400–V system), improve the power supply impedance. | Overvoltage of the DC link section of the PSM was detected. (PSM alarm indication: 7) PSM selection error. (The maximum output specification of the PSM is exceeded.) |
| 9n12 | SPN_n_ : OVERCURRENT POW CIRCUIT | 12 | 1 Check the motor insulation status.
2 Check the spindle parameters.
3 Replace the SPM unit. | The motor output current is abnormally high. A motor–specific parameter does not match the motor model. Poor motor insulation |
| 9n15 | SPN_n_ : SP SWITCH CONTROL ALARM | 15 | 1 Check and correct the ladder sequence.
2 Replace the switching MC. | The switch sequence in spindle switch/output switch operation is abnormal. The switching MC contact status check signal and command do not match. |
| 9n16 | SPN_n_ : RAM FAULT | 16 | Replace the SPM control printed circuit board. | Abnormality in an SPM control circuit component is detected. (RAM for external data is abnormal.) |
| 9n18 | SPN_n_ : SUMCHECK ERROR PGM DATA | 18 | Replace the SPM control printed circuit board. | Abnormality in an SPM control circuit component is detected. (Program ROM data is abnormal.) |
| 9n19 | SPN_n_ : EX OFFSET CURRENT U | 19 | Replace the SPM unit. | Abnormality in an SPM component is detected. (The initial value for the U phase current detection circuit is abnormal.) |
| 9n20 | SPN_n_ : EX OFFSET CURRENT V | 20 | Replace the SPM unit. | Abnormality in an SPM component is detected. (The initial value of the V phase current detection circuit is abnormal.) |
| 9n21 | SPN_n_ : POS SENSOR POLARITY ERROR | 21 | Check and correct the parameters. (No. 4000#0, 4001#4) | The polarity parameter setting of the position sensor is wrong. |
| 9n24 | SPN_n_ : SERIAL TRANSFER ERROR | 24 | 1 Place the CNC–to–spindle cable away from the power cable.
2 Replace the cable. | The CNC power is turned off (normal power–off or broken cable). An error is detected in communication data transferred to the CNC. |
| 9n26 | SPN_n_ : DISCONNECT C–VELO DETECT | 26 | 1 Replace the cable.
2 Re–adjust the pre–amplifier. | The signal amplitude of the detection signal (connector JY2) on the Cs contour control motor side is abnormal. (Unconnected cable, adjustment error, etc.) |
<table>
<thead>
<tr>
<th>No.</th>
<th>Message</th>
<th>SPM indication(*1)</th>
<th>Faulty location and remedy</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9n27</td>
<td>SPN_n_: DISCONNECT POS-CODER</td>
<td>27</td>
<td>1 Replace the cable. 2 Re-adjust the BZ sensor signal.</td>
<td>1 The spindle position coder (connector JY4) signal is abnormal. 2 The signal amplitude (connector JY2) of the MZ or BZ sensor is abnormal. (Unconnected cable, adjustment error, etc.)</td>
</tr>
<tr>
<td>9n28</td>
<td>SPN_n_: DISCONNECT C-POS DETECT</td>
<td>28</td>
<td>1 Replace the cable 2 Re-adjust the pre-amplifier.</td>
<td>The position detection signal (connector JY5) for Cs contour control is abnormal. (Unconnected cable, adjustment error, etc.)</td>
</tr>
<tr>
<td>9n29</td>
<td>SPN_n_: SHORTTIME OVERLOAD</td>
<td>29</td>
<td>Check and correct the load status.</td>
<td>Excessive load has been applied continuously for a certain period of time. (This alarm is issued also when the motor shaft has been locked in the excitation state.)</td>
</tr>
<tr>
<td>9n30</td>
<td>SPN_n_: OVERCURRENT POW CIRCUIT</td>
<td>30</td>
<td>Check and correct the power supply voltage.</td>
<td>Overcurrent is detected in PSM main circuit input. (PSM alarm indication: 1) Unbalanced power supply. PSM selection error (The maximum PSM output specification is exceeded.)</td>
</tr>
<tr>
<td>9n31</td>
<td>SPN_n_: MOTOR LOCK OR V-SIG LOS</td>
<td>31</td>
<td>1 Check and correct the load status. 2 Replace the motor sensor cable (JY2 or JY5).</td>
<td>The motor cannot rotate at a specified speed. (A level not exceeding the SST level for the rotation command has existed continuously.) Abnormality in the speed detection signal.</td>
</tr>
<tr>
<td>9n32</td>
<td>SPN_n_: RAM FAULT SERIAL LSI</td>
<td>32</td>
<td>Replace the SPM control printed circuit board.</td>
<td>Abnormality in an SPM control circuit component is detected. (The LSI device for serial transfer is abnormal.)</td>
</tr>
<tr>
<td>9n33</td>
<td>SPN_n_: SHORTAGE POWER CHARGE</td>
<td>33</td>
<td>1 Check and correct the power supply voltage. 2 Replace the PSM unit.</td>
<td>Charging of direct current power supply voltage in the power circuit section is insufficient when the magnetic contractor in the amplifier is turned on (such as open phase and defective charging resistor).</td>
</tr>
<tr>
<td>9n34</td>
<td>SPN_n_: PARAMETER SETTING ERROR</td>
<td>34</td>
<td>Correct a parameter value according to the manual.</td>
<td>Parameter data exceeding the allowable limit is set.</td>
</tr>
<tr>
<td>9n35</td>
<td>SPN_n_: EX SETTING GEAR RATIO</td>
<td>35</td>
<td>Correct the value according to the parameter manual.</td>
<td>Gear ratio data exceeding the allowable limit is set.</td>
</tr>
<tr>
<td>9n36</td>
<td>SPN_n_: OVERFLOW ERROR COUNTER</td>
<td>36</td>
<td>Check whether the position gain value is too large, and correct the value.</td>
<td>An error counter overflow occurred.</td>
</tr>
<tr>
<td>No.</td>
<td>Message</td>
<td>SPM indication(*1)</td>
<td>Faulty location and remedy</td>
<td>Description</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------------------</td>
<td>-------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>9n37</td>
<td>SPN_n_ : SPEED DETECT PAR. ERROR</td>
<td>37</td>
<td>Correct the value according to the parameter manual.</td>
<td>The setting of the parameter for the number of pulses in the speed detector is incorrect.</td>
</tr>
<tr>
<td>9n39</td>
<td>SPN_n_ : 1–ROT Cs SIGNAL ERROR</td>
<td>39</td>
<td>1 Adjust the 1–rotation signal in the pre–amplifier. 2 Check the cable shield status. 3 Replace the cable.</td>
<td>An incorrect relationship between the 1–rotation signal and the number of AB phase pulses was detected during Cs contour control.</td>
</tr>
<tr>
<td>9n40</td>
<td>SPN_n_ : NO 1–ROT Cs SIGNAL DETECT</td>
<td>40</td>
<td>1 Adjust the 1–rotation signal in the pre–amplifier. 2 Check the cable shield status. 3 Replace the cable.</td>
<td>The 1–rotation signal is not generated during Cs contour control.</td>
</tr>
<tr>
<td>9n41</td>
<td>SPN_n_ : 1–ROT POS–CODER ERROR</td>
<td>41</td>
<td>1 Check and correct the parameter. 2 Replace the cable. 3 Re–adjust the BZ sensor signal.</td>
<td>1 The 1–rotation signal of the spindle position coder (connector JY4) is abnormal. 2 The 1–rotation signal (connector JY2) of the MZ or BZ sensor is abnormal. 3 Parameter setting error</td>
</tr>
<tr>
<td>9n42</td>
<td>SPN_n_ : NO 1–ROT. POS–CODER DETECT</td>
<td>42</td>
<td>1 Replace the cable. 2 Re–adjust the BZ sensor signal.</td>
<td>1 The 1–rotation signal of the spindle position coder (connector JY4) is disconnected. 2 The 1–rotation signal (connector JY2) of the MZ or BZ sensor is disconnected.</td>
</tr>
<tr>
<td>9n43</td>
<td>SPN_n_ : DISCON. PC FOR DIF. SP. MODE</td>
<td>43</td>
<td>Replace the cable.</td>
<td>The differential speed position coder signal (connector JY8) in SPM type 3 is abnormal.</td>
</tr>
<tr>
<td>9n44</td>
<td>SPN_n_ : CONTROL CIRCUIT(AD) ERROR</td>
<td>44</td>
<td>Replace the SPM control printed circuit board.</td>
<td>Abnormality in an SPM control circuit component was detected (A/D converter abnormality).</td>
</tr>
<tr>
<td>9n46</td>
<td>SPN_n_ : SCREW 1–ROT POS–COD. ALARM</td>
<td>46</td>
<td>1 Check and correct the parameter. 2 Replace the cable. 3 Re–adjust the BZ sensor signal.</td>
<td>An abnormality equivalent to alarm 41 was detected during thread cutting operation.</td>
</tr>
<tr>
<td>9n47</td>
<td>SPN_n_ : POS–CODER SIGNAL ABNORMAL</td>
<td>47</td>
<td>1 Replace the cable. 2 Re–adjust the BZ sensor signal. 3 Correct the cable layout (vicinity of the power line).</td>
<td>1 The A/B phase signal of the spindle position coder (connector JY4) is abnormal. 2 The A/B phase signal (connector JY2) of the MZ or BZ sensor is abnormal. The relationship between the A/B phase and 1–rotation signal is incorrect (Pulse interval mismatch).</td>
</tr>
<tr>
<td>9n49</td>
<td>SPN_n_ : HIGH CONV. DIF. SPEED</td>
<td>49</td>
<td>Check whether the calculated differential speed value exceeds the maximum motor speed.</td>
<td>In differential speed mode, the speed of the other spindle converted to the speed of the local spindle has exceeded the allowable limit (the differential speed is calculated by multiplying the speed of the other spindle by the gear ratio).</td>
</tr>
<tr>
<td>No.</td>
<td>Message</td>
<td>SPM indication(*1)</td>
<td>Faulty location and remedy</td>
<td>Description</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>-------------------</td>
<td>----------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>9n50</td>
<td>SPN_n_ : SPNDL CONTROL OVER-SPEED</td>
<td>50</td>
<td>Check whether the calculated value exceeds the maximum motor speed.</td>
<td>In spindle synchronization, the speed command calculation value exceeded the allowable limit (the motor speed is calculated by multiplying the specified spindle speed by the gear ratio).</td>
</tr>
<tr>
<td>9n51</td>
<td>SPN_n_ : LOW VOLT DC LINK</td>
<td>51</td>
<td>1 Check and correct the power supply voltage. 2 Replace the MC.</td>
<td>Input voltage drop was detected. (PSM alarm indication: 4) (Momentary power failure or poor MC contact)</td>
</tr>
<tr>
<td>9n52</td>
<td>SPN_n_ : ITP SIGNAL ABNORMAL I</td>
<td>52</td>
<td>1 Replace the SPM control printed circuit board. 2 Replace the spindle interface printed circuit board in the CNC.</td>
<td>NC interface abnormality was detected (the ITP signal stopped).</td>
</tr>
<tr>
<td>9n53</td>
<td>SPN_n_ : ITP SIGNAL ABNORMAL II</td>
<td>53</td>
<td>1 Replace the SPM control printed circuit board. 2 Replace the spindle interface printed circuit board in the CNC.</td>
<td>NC interface abnormality was detected (the ITP signal stopped).</td>
</tr>
<tr>
<td>9n54</td>
<td>SPN_n_ : OVERLOAD CURRENT</td>
<td>54</td>
<td>Review the load state.</td>
<td>An overload current was detected.</td>
</tr>
<tr>
<td>9n55</td>
<td>SPN_n_ : POWER LINE SWITCH ERROR</td>
<td>55</td>
<td>1 Replace the magnetic contactor. 2 Check and correct the sequence.</td>
<td>The power line state signal of the magnetic contactor for selecting a spindle or output is abnormal.</td>
</tr>
<tr>
<td>9n56</td>
<td>SPN_n_ : INNER COOLING FAN STOP</td>
<td>56</td>
<td>Replace the SPM unit.</td>
<td>The cooling fan in the SPM control circuit stopped.</td>
</tr>
<tr>
<td>9n57</td>
<td>SPN_n_ : EX DECELERATION POWER</td>
<td>57</td>
<td>1 Decrease the acceleration/deceleration duty. 2 Check the cooling condition (peripheral temperature). 3 If the cooling fan stops, replace the resistor. 4 If the resistance is abnormal, replace the resistor.</td>
<td>An overload was detected in the regenerative resistance. (PSM alarm indication: 8) Thermostat operation or short-term overload was detected. The regenerative resistor was disconnected, or an abnormal resistance was detected.</td>
</tr>
<tr>
<td>9n58</td>
<td>SPN_n_ : OVERLOAD IN PSM</td>
<td>58</td>
<td>1 Check the PSM cooling status. 2 Replace the PSM unit.</td>
<td>The temperature of the radiator of the PSM has increased abnormally. (PSM alarm indication: 3)</td>
</tr>
<tr>
<td>9n59</td>
<td>SPN_n_ : COOLING FAN STOP IN PSM</td>
<td>59</td>
<td>Replace the SPM unit.</td>
<td>The cooling fan in the PSM stopped. (PSM alarm indication: 2)</td>
</tr>
<tr>
<td>9n62</td>
<td>SPN_n_ : MOTOR VCMD OVER-FLOWED</td>
<td>62</td>
<td>Check and correct the parameters. (No. 4021, 4056~4059)</td>
<td>The specified motor speed is too large.</td>
</tr>
<tr>
<td>9n66</td>
<td>SPN_n_ : AMP MODULE COMMUNICATION</td>
<td>66</td>
<td>1 Replace the cable. 2 Check and correct the connection.</td>
<td>An error was found in communication between amplifiers.</td>
</tr>
<tr>
<td>9n73</td>
<td>SPN_n_ : MOTOR SENSOR DISCONNECTED</td>
<td>73</td>
<td>1 Replace the feedback cable. 2 Check the shield processing. 3 Check and correct the connection. 4 Adjust the sensor.</td>
<td>The motor sensor feedback signal is not present.</td>
</tr>
<tr>
<td>No.</td>
<td>Message</td>
<td>SPM indication(*1)</td>
<td>Faulty location and remedy</td>
<td>Description</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>-------------------</td>
<td>---------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>9n74</td>
<td>SPN_n_ : CPU TEST ERROR</td>
<td>74</td>
<td>Replace the SPM control printed–circuit board.</td>
<td>An error was detected in a CPU test.</td>
</tr>
<tr>
<td>9n75</td>
<td>SPN_n_ : CRC ERROR</td>
<td>75</td>
<td>Replace the SPM control printed–circuit board.</td>
<td>An error was detected in a CRC test.</td>
</tr>
<tr>
<td>9n79</td>
<td>SPN_n_ : INITIAL TEST ERROR</td>
<td>79</td>
<td>Replace the SPM control printed–circuit board.</td>
<td>An error was detected in an initial test operation.</td>
</tr>
</tbody>
</table>
| 9n81 | SPN_n_ : 1–ROT MOTOR SENSOR ERROR | 81 | 1 Check and correct the parameter.
2 Replace the feedback cable.
3 Adjust the sensor. | The one–rotation signal of the motor sensor cannot be correctly detected. |
| 9n82 | SPN_n_ : NO 1–ROT MOTOR SENSOR | 82 | 1 Replace the feedback cable.
2 Adjust the sensor. | The one–rotation signal of the motor sensor is not generated. |
| 9n83 | SPN_n_ : MOTOR SENSOR SIGNAL ERROR | 83 | 1 Replace the feedback cable.
2 Adjust the sensor. | An irregularity was detected in a motor sensor feedback signal. |
| 9n84 | SPN_n_ : SPNDL SENSOR DISCONNECTED | 84 | 1 Replace the feedback cable.
2 Check the shield processing.
3 Check and correct the connection.
4 Check and correct the parameter.
5 Adjust the sensor. | The spindle sensor feedback signal is not present. |
| 9n85 | SPN_n_ : 1–ROT SPNDL SENSOR ERROR | 85 | 1 Check and correct the parameter.
2 Replace the feedback cable.
3 Adjust the sensor. | The one–rotation signal of the spindle sensor cannot be correctly detected. |
| 9n86 | SPN_n_ : NO 1–ROT SPNDL SENSOR ERROR | 86 | 1 Replace the feedback cable.
2 Adjust the sensor. | The one–rotation signal of the spindle sensor cannot be correctly detected. |
| 9n87 | SPN_n_ : SPNDL SENSOR SIGNAL ERROR | 87 | The one–rotation signal of the spindle sensor is not generated. | An irregularity was detected in a spindle sensor feedback signal. |
| 9n88 | SPN_n_ : COOLING RADIFAN FAILURE | 88 | Replace the SPM external cooling fan. | The external cooling fan stopped. |
ERROR CODES (SERIAL SPINDLE)

NOTE*1
Note that the meanings of the SPM indications differ depending on which LED, the red or yellow LED, is on. When the yellow LED is on, an error code is indicated with a 2-digit number. The error code is not displayed on the CNC screen. When the red LED is on, the SPM indicates the number of an alarm generated in the serial spindle. → See, "Alarms (Serial Spindle)."

Errors Displayed on the α Series Spindle Amplifier

<table>
<thead>
<tr>
<th>SPM indication(*1)</th>
<th>Faulty location and remedy</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Check the *ESP and MRDY sequence. (For MRDY, pay attention to the parameter setting regarding the use of the MRDY signal (bit 0 of parameter No. 4001).)</td>
<td>Although neither *ESP (emergency stop signal; there are two types of signals including the PMC signal and PSM contact signal(*2)) nor MRDY (machine ready signal) is input, SFR (forward rotation signal)/SRF (reverse rotation signal)/ORCM (orientation command) is input.</td>
</tr>
<tr>
<td>02</td>
<td>Check the spindle motor speed detector parameter (bits 2, 1, and 0 of parameter No. 4011).</td>
<td>When the spindle motor has a high-resolution magnetic pulse coder (Cs sensor) (bits 6 and 5 of parameter No. 4001 are set to 0 and 1, respectively), 128 /rev is to be set for the speed detector (bits 2, 1, and 0 of parameter No. 4011 are set to 0, 0, and 1, respectively). However, a value other than 128 /rev is set. In this case, the motor is not excited.</td>
</tr>
<tr>
<td>03</td>
<td>Check the parameters for the detector for Cs contour control (bit 5 of parameter No. 4001 and bit 4 of parameter No. 4018).</td>
<td>Although use of a high-resolution magnetic pulse coder (bit 5 of parameter No. 4001 = 1) or use of the Cs contour control function by the sensor (bit 4 of parameter No. 4018 = 1) is not set, a Cs control command is input. In this case, the motor is not excited.</td>
</tr>
<tr>
<td>04</td>
<td>Check the position coder signal parameter (bit 2 of parameter No. 4001).</td>
<td>Although use of the position coder signal (bit 2 of parameter No. 4001 = 1) is not set, a servo mode (rigid tapping, spindle positioning) or spindle synchronization command is input. In this case, the motor is not excited.</td>
</tr>
<tr>
<td>05</td>
<td>Check the orientation software option.</td>
<td>Although the orientation option is not set, an orientation command (ORCM) is input.</td>
</tr>
<tr>
<td>06</td>
<td>Check the spindle output switching software option and power line status signal (RCH).</td>
<td>Although the output switching option is not set, the low-speed winding is selected (RCH = 1).</td>
</tr>
<tr>
<td>07</td>
<td>Check the sequence (CON, SFR, SRV).</td>
<td>Although the Cs contour control mode is specified, SFR/SRV is not input.</td>
</tr>
<tr>
<td>08</td>
<td>Check the sequence (SFR, SRV).</td>
<td>Although the servo mode (rigid tapping, spindle positioning) is specified, SFR/SRV is not input.</td>
</tr>
<tr>
<td>09</td>
<td>Check the sequence (SPSYC, SFR, SRV)</td>
<td>Although spindle synchronization mode is specified, SFR/SRV is not input.</td>
</tr>
<tr>
<td>10</td>
<td>During execution of the C–axis control command, do not specify another operation mode. Before entering another mode, cancel the Cs contour control command.</td>
<td>Although Cs contour control mode is set, another operation mode (servo mode, spindle synchronization, or orientation) is specified.</td>
</tr>
<tr>
<td>11</td>
<td>During execution of the servo mode command, do not specify another operation mode. Before entering another mode, cancel the servo mode.</td>
<td>Although servo mode (rigid tapping, or spindle positioning) is set, another operation mode (Cs contour control, spindle synchronization, or orientation) is specified.</td>
</tr>
</tbody>
</table>
APPENDIX G. ALARM LIST

<table>
<thead>
<tr>
<th>SPM indication(*1)</th>
<th>Faulty location and remedy</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>During execution of the spindle synchronization command, do not specify another operation mode. Before entering another mode, cancel the spindle synchronization command.</td>
<td>Although spindle synchronization is being performed, another operation mode (Cs contour control, servo mode, or orientation) is specified.</td>
</tr>
<tr>
<td>13</td>
<td>During execution of the orientation command, do not specify another operation mode. Before entering another mode, cancel the orientation command.</td>
<td>Although the orientation command is being executed, another operation mode (Cs contour control, servo mode, or synchronization) is specified.</td>
</tr>
<tr>
<td>14</td>
<td>Input the SFT or SRV signal.</td>
<td>The SFT and SRV signals are both input at the same time.</td>
</tr>
<tr>
<td>15</td>
<td>Check bit 5 of parameter No. 4000 and PMC signal (CON).</td>
<td>When bit 5 of parameter No. 4000 is set to 1 to indicate the presence of the differential speed mode function, Cs contour control is specified.</td>
</tr>
<tr>
<td>16</td>
<td>Check bit 5 of parameter No. 4000 and PMC signal (DEFMD).</td>
<td>When bit 5 of parameter No. 4000 is set to 0 to indicate the absence of the differential speed mode function, the differential speed mode command (DEFMD) is input.</td>
</tr>
<tr>
<td>17</td>
<td>Check bits 2, 1, and 0 of parameter No. 4011.</td>
<td>Setting of the speed detector parameter (bits 2, 1, and 0 of parameter No. 4011) is invalid. (The corresponding speed detector is not present.)</td>
</tr>
<tr>
<td>18</td>
<td>Check bit 2 of parameter No. 4001 and PMC signal (ORCM).</td>
<td>Although bits 2 of parameter No. 4001 is set to 0 not to use the position coder signal, a command for orientation by a position coder (ORCMA) is input.</td>
</tr>
<tr>
<td>19</td>
<td>During execution of the orientation command, do not specify another operation mode. Before entering another mode, cancel the orientation command.</td>
<td>Although orientation by a magnetic sensor is being performed, another operation mode is specified.</td>
</tr>
<tr>
<td>20</td>
<td>Check bit 5 of parameter No. 4001, bit 5 of parameter No. 4014, and bit 4 of parameter No. 4018.</td>
<td>When the use of the slave operation mode function is set (bit 5 of parameter No. 4014 = 1), the use of a high-resolution magnetic pulse coder (bit 5 of parameter No. 4001 = 1) or the use of the Cs contour control function by the sensor (bit 4 of parameter No. 4018 = 1) is specified. These items cannot be set at the same time.</td>
</tr>
<tr>
<td>21</td>
<td>Input the slave operation mode command (SLV) in normal operation mode.</td>
<td>Although position control (such as servo mode or orientation) is being performed, a slave operation mode command (SLV) is input.</td>
</tr>
<tr>
<td>22</td>
<td>Input the position control command in normal operation mode</td>
<td>Although slave operation mode is set (SLVS = 1), a position control command (such as servo mode or orientation) is input.</td>
</tr>
<tr>
<td>23</td>
<td>Check bit 5 of parameter No. 4014 and PMC signal (SLV).</td>
<td>Although bit 5 of parameter No. 4014 is set to 0 not to use the slave operation mode function, a slave operation mode command (SLV) is input.</td>
</tr>
<tr>
<td>24</td>
<td>Check the PMC signal (INCMD). Perform orientation by specifying an absolute position first.</td>
<td>Orientation is performed in incremental operation mode (INCMD = 1) first, then the absolute position command (INCMD = 0) is input.</td>
</tr>
<tr>
<td>25</td>
<td>Check the spindle amplifier specifications and parameter setting (bit 4 of parameter No. 4018).</td>
<td>Although the spindle amplifier SPM type 4 is not used, the use of the Cs contour control function by the sensor is set (bit 4 of parameter No. 4018 = 1).</td>
</tr>
</tbody>
</table>

NOTE*2

<table>
<thead>
<tr>
<th>PSM contact signal</th>
<th>Contact open: Emergency stop</th>
<th>Contact closed: Normal operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between ESP1 and ESP2 on the PSM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
11) System alarms

(These alarms cannot be reset with reset key.)

<table>
<thead>
<tr>
<th>Number</th>
<th>Message</th>
<th>Contents</th>
</tr>
</thead>
</table>
| 900 | ROM PARITY | ROM parity error (CNC/OMM/Servo)
Replace the number of ROM. |
| 910 | SRAM PARITY : (BYTE 0) | RAM parity error in the tape memory RAM module.
Clear the memory or replace the module.
After this operation, reset all data including the parameters. |
| 911 | SRAM PARITY: (BYTE 1) | RAM parity error in the tape memory RAM module.
Clear the memory or replace the module.
After this operation, reset all data including the parameters. |
| 912 | DRAM PARITY : (BYTE 0) | RAM parity error in the DRAM module.
Replace the DRAM module. |
| 913 | DRAM PARITY : (BYTE 1) | |
| 914 | DRAM PARITY : (BYTE 2) | |
| 915 | DRAM PARITY : (BYTE 3) | |
| 916 | DRAM PARITY : (BYTE 4) | |
| 917 | DRAM PARITY : (BYTE 5) | |
| 918 | DRAM PARITY : (BYTE 6) | |
| 919 | DRAM PARITY : (BYTE 7) | |
| 920 | SERVO ALARM (1 to 4 AXIS) | Servo alarm (1st to 4th axis).
A watchdog alarm or a RAM parity error in the servo module occurred.
Replace the servo control module on the main CPU board. |
| 926 | FSSB ALARM | FSSB alarm.
Replace the servo control module on the main CPU board. |
| 930 | CPU INTERRUPT | CPU error (abnormal interrupt)
The main CPU board is faulty. |
| 935 | SRAM ECC ERROR | An error occurred in RAM for part program storage.
Action:
Replace the master printed circuit board (SRAM module), perform all-clear operation, and set all parameter and other data again. |
| 950 | PMC SYSTEM ALARM | Fault occurred in the PMC.
The PMC control module on the main CPU board or option board may be faulty. |
| 951 | PMC–RC WATCH DOG ALARM | Fault occurred in the PMC–RC (watchdog alarm).
Option board may be faulty. |
| 970 | NMI OCCURRED IN PMCLSI | With the PMC–SA1, an error occurred in the PMC control LSI device on the motherboard.
(I/O RAM parity)
Replace the motherboard. |
| 971 | NMI OCCURRED IN SLC | With the PMC–SA1, an I/O Link disconnection was detected.
Check the I/O Link. |
| 972 | NMI OCCURRED IN OTHER MOD-ULE | NMI occurred in a board other than the main CPU board. |
| 973 | NON MASK INTERRUPT | NMI occurred for an unknown reason. |
| 974 | F–BUS ERROR | BUS error of FANUC BUS.
The main CPU board or option boards may be faulty. |
| 975 | BUS ERROR (MAIN) | Main CPU board bus error.
The main CPU board may be faulty. |
| 976 | L–BUS ERROR | Bus error of Local Bus.
The main CPU board may be faulty. |
Index

[Numbers]
7.2”/8.4” LCD–Mounted Type CNC Control Unit, 376
9.5”/10.4” LCD–Mounted Type CNC Control Unit, 376

[A]
Absolute and Incremental Programming (G90, G91), 90
Actual Feedrate Display, 605
Address and Specifiable Value Range for Series 10/11 Tape Format, 308
Alarm and Self–Diagnosis Functions, 485
Alarm Display, 370$486
Alarm History Display, 488
Alarm List, 725
Altering a Word, 563
Angular Axis Control / Arbitrary Angular Axis Control, 341
Arithmetic and Logic Operation, 263
Assembling, 459
Automatic Erase Screen Display, 668
Automatic Inserting of Sequence Numbers, 587
Automatic Operation, 361
Automatic operation, 423
Automatic Tool Offset (G36, G37), 248
Auxiliary Function, 113
Auxiliary Function (M Function), 114
Axis Control Function, 323

[B]
B–Axis Control (G100, G101, G102, G103, G110), 332
Background Editing, 582
Battery for Built–in Absolute Pulse Coders (DC6V), 695
Battery for Separate Absolute Pulse Coders (6 VDC), 694
Battery in the Panel i (3 VDC), 692
Branch and Repetition, 269

[C]
Canceling Spindle Positioning, 105
Canned Cycle, 311
Canned Cycle (G90, G92, G94), 132
Canned Cycle for Drilling (G80 – G89), 159
Canned Cycle for Drilling Cancel (G80), 169
Canned Drilling Cycle Formats, 314
Cautions on Reading this Manual, 8
Cautions on Various Kinds of Data, 8
Chamfering and Corner R, 171
Changing Tool Offset Value (Programmable Data Input) (G10), 247
Changing Workpiece Coordinate System, 81
Character–to–Codes Correspondence Table, 724
Characters and Codes to be Used for the Pattern Data Input Function, 352
Check by Running the Machine, 363
Checked by Self–Diagnostic Screen, 489
Chuck and Tailstock Barriers, 478
Circular Interpolation (G02, G03), 41
Clearing the Screen, 667
Command for Machine Operations – Miscellaneous Function, 22
Compensation Function, 26$184
Conditional Branch (IF Statement), 270
Connecting PCMCIA Card Attachment, 459
Constant Lead Threading (G32), 53
Constant Surface Speed Control (G96, G97), 96
Continuous Thread Cutting, 58
Controlled Axes, 28$29
Coordinate System, 76
Coordinate System on Part Drawing and Coordinate System Specified by CNC – Coordinate System, 16
Coordinate Value and Dimension, 89
Copying an Entire Program, 573
Copying Part of a Program, 574
Correction in Chamfering and Corner Arcs, 233
Counter Input of Offset value, 633
Counting a Tool Life, 111
Creating Programs, 585
Creating Programs in Teach in Mode (Playback), 589
Creating Programs Using the MDI Panel, 586
Current Block Display Screen, 612
Current Position Display, 370
Custom Macro, 251
Cutting Feed, 69
Cutting Speed – Spindle Speed Function, 21
Cylindrical Interpolation (G07.1), 49
[D]
Data Input/Output, 492
Data Input/Output on the ALL IO Screen, 520
Data Input/Output Using a Memory Card, 545
Data Output, 373
Decimal Point Programming, 92
Deleting a Block, 565
Deleting a Word, 564
Deleting All Programs, 570
Deleting Blocks, 565
Deleting Files, 517
Deleting More Than One Program by Specifying a Range, 571
Deleting Multiple Blocks, 566
Deleting One Program, 570
Deleting Programs, 570
Details of Functions, 297
Details of Tool Nose Radius Compensation, 207
Diameter and Radius Programming, 93
Direct Drawing Dimensions Programming, 175
Direct Input of Measured Workpiece Origin Offsets, 646
Direct Input of Tool Offset Measured B, 631
Direct Input of Tool Offset Value, 629
Direction of Imaginary Tool Nose, 196
Display, 369
Display of Run Time and Parts Count, 607
Displaying a Program List for a Specified Group, 622
Displaying and Entering Setting Data, 639
Displaying and Setting Custom Macro Common Variables, 648
Displaying and Setting Data, 366
Displaying and Setting Parameters, 657
Displaying and Setting Pitch Error Compensation Data, 659
Displaying and Setting Run Time, Parts Count, and Time, 643
Displaying and Setting the Software Operator’s Panel, 649
Displaying and Setting the Workpiece Origin Offset Value, 645
Displaying and Setting Tool Life Management Data, 651
Displaying Directory of Floppy Disk, 511
Displaying Memory Used and a List of Programs, 619
Displaying the B-axis Operation State, 617
Displaying the Directory, 512
Displaying the Pattern Menu, 344
Displaying the Program Number and Sequence Number, 662
Displaying the Program Number, Sequence Number, and Status, and Warning Messages for Data Setting or Input/Output Operation, 662
Displaying the Status and Warning for Data Setting or Input/Output Operation, 663
Distribution Processing Termination Monitoring Function for the High-Speed Machining Command (G05), 322
DNC Operation, 452
DNC operation, 456
DNC Operation with Memory Card, 455
Dry Run, 467
Dwell (G04), 71

[E]
Editing a Part Program, 365
Editing of Custom Macros, 581
Editing Programs, 557
Emergency Stop, 472
End Face Peck Drilling Cycle (G74), 151
End Face Turning Cycle (G94), 137
Equal–Lead Threading, 309
Erase CRT Screen Display, 667
Explanation of the Keyboard, 380
Extended Part Program Editing Function, 572
External I/O Devices, 403
External Operator Message History Display, 665
External Output Commands, 291

[F]
FANUC Handy File, 405
Feed Functions, 66
Feed–Feed Function, 14
Feedrate Override, 465
File Deletion, 497
File Search, 495
Files, 493
Finishing Cycle (G70), 148
Front Boring Cycle (G85) / Side Boring Cycle (G89), 168
Front Drilling Cycle (G83) / Side Drilling Cycle (G87), 163
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Face Rigid Tapping Cycle (G84) / Side Face Rigid Tapping Cycle (G88), 181</td>
</tr>
<tr>
<td>Front Tapping Cycle (G84) / Side Tapping Cycle (G88), 166</td>
</tr>
<tr>
<td>Function Keys, 383</td>
</tr>
<tr>
<td>Function Keys and Soft Keys, 382</td>
</tr>
<tr>
<td>Function to Simplify Programming, 131</td>
</tr>
<tr>
<td>Functions for High Speed Cutting, 318</td>
</tr>
<tr>
<td>G53, G28, G30, and G30.1 Commands when Tool Position Offset is Applied, 190</td>
</tr>
<tr>
<td>General Flow of Operation of CNC Machine Tool, 6</td>
</tr>
<tr>
<td>General Precautions for Offset Operations, 236</td>
</tr>
<tr>
<td>General Screen Operations, 382</td>
</tr>
<tr>
<td>Graphic Display (See Section III–12), 372</td>
</tr>
<tr>
<td>Graphics Display, 670</td>
</tr>
<tr>
<td>Graphics Function, 669</td>
</tr>
<tr>
<td>Heading a Program, 561</td>
</tr>
<tr>
<td>Help Function, 675</td>
</tr>
<tr>
<td>High-Speed Remote Buffer A (G05), 320</td>
</tr>
<tr>
<td>How to Indicate Command Dimensions for Moving the Tool – Absolute, Incremental Commands, 19</td>
</tr>
<tr>
<td>How to Use Canned Cycles (G90, G92, G94), 140</td>
</tr>
<tr>
<td>How to View the Position Display Change without Running the Machine, 364</td>
</tr>
<tr>
<td>Inputting and Outputting Parameters and Pitch Error Compensation Data, 505</td>
</tr>
<tr>
<td>Inputting and Outputting Programs, 522</td>
</tr>
<tr>
<td>Inputting Custom Macro Common Variables, 509</td>
</tr>
<tr>
<td>Inputting Offset Data, 503</td>
</tr>
<tr>
<td>Inputting Parameters, 505</td>
</tr>
<tr>
<td>Inputting Pitch Error Compensation Data, 507</td>
</tr>
<tr>
<td>Inputting/Outputting Custom Macro Common Variables, 509</td>
</tr>
<tr>
<td>Inserting a Word, 562</td>
</tr>
<tr>
<td>Inserting, Altering and Deleting a Word, 558</td>
</tr>
<tr>
<td>Interference Check, 227</td>
</tr>
<tr>
<td>Interpolation Functions, 37</td>
</tr>
<tr>
<td>Jog Feed, 412</td>
</tr>
<tr>
<td>Key Input and Input Buffer, 400</td>
</tr>
<tr>
<td>LIMITATION and NOTES, 458</td>
</tr>
<tr>
<td>Limitations, 290</td>
</tr>
<tr>
<td>Linear Interpolation (G01), 40</td>
</tr>
<tr>
<td>List of Functions and Tape Format, 706</td>
</tr>
<tr>
<td>Local Coordinate System, 86</td>
</tr>
<tr>
<td>Machine Coordinate System, 77</td>
</tr>
<tr>
<td>Machine Lock and Auxiliary Function Lock, 463</td>
</tr>
<tr>
<td>Macro Call, 274</td>
</tr>
<tr>
<td>Macro Call Using an M Code, 282</td>
</tr>
<tr>
<td>Macro Call Using G Code, 281</td>
</tr>
<tr>
<td>Macro Statements and NC Statements, 268</td>
</tr>
<tr>
<td>Manual Absolute On and Off, 418</td>
</tr>
<tr>
<td>Manual Handle Feed, 415</td>
</tr>
<tr>
<td>Manual Handle Interruption, 445</td>
</tr>
<tr>
<td>Manual Intervention and Return, 450</td>
</tr>
<tr>
<td>Manual Operation, 358$409</td>
</tr>
<tr>
<td>Manual Reference Position Return, 410</td>
</tr>
</tbody>
</table>

B-63604EN/01
Maximum Strokes, 31
MDI Operation, 427
Memory Card Input/Output, 536
Memory Operation, 424
Memory Operation by Series 10/11 Tape Format, 307
Merging a Program, 576
Method of Replacing Battery, 685
Mirror Image, 448
Mirror Image for Double Turret (G68, G69), 174
Modal Call (G66), 279
Moving Part of a Program, 575
Multiple M Commands in a Single Block, 115
Multiple Repetitive Canned Turning Cycle, 312
Multiple Repetitive Cycle (G70 – G76), 142
Multiple Thread Cutting Cycle (G76), 153
Multiple–Thread Cutting, 59
Multistage Skip, 63

Name of Axes, 29
Next Block Display Screen, 613
Nomographs, 713
Notes on Multiple Repetitive Cycle (G70 – G76), 158
Notes on Tool Nose Radius Compensation, 204

Offset, 187
Offset Data Input and Output, 503
Offset Number, 186
Offset Number and Offset Value, 197
Operating Monitor Display, 608
Operational Devices, 374
Operations, 456
Outer Diameter / Internal Diameter Cutting Cycle (G90), 132
Outer Diameter / Internal Diameter Drilling Cycle (G75), 152
Outputting a Program, 501
Outputting a Program List for a Specified Group, 519
Outputting Custom Macro Common Variable, 510
Outputting Custom Macro Common Variables, 530
Outputting Offset Data, 504
Outputting Parameters, 506
Outputting Pitch Error Compensation Data, 508
Outputting Programs, 516
Overall Position Display, 603
Overcutting by Tool Nose Radius Compensation, 232
Overtravel, 473
Overview of Tool Nose Radius Compensation, 194

PARAMETER, 458
Part Drawing and Tool Movement, 15
Parts Count Display, Run Time Display, 371
Password Function, 583
Pattern Data Display, 348
Pattern Data Input Function, 343
Pattern Repeating (G73), 147
Plane Selection, 88
Polar Coordinate Interpolation (G12.1, G13.1), 45
Polygonal Turning, 324
Position Display in the Relative Coordinate System, 601
Position Display in the Workpiece Coordinate System, 600
Positioning (G00), 38
Power Disconnection, 408
Power On/Off, 406
Precautions to be Taken by Operator, 170
Preparatory Function (G Function), 32
PreSETTING the Workpiece Coordinate System, 604
Processing Macro Statements, 287
Program Check Screen, 614
Program Components Other than Program Sections, 119
Program Configuration, 23S117
Program Contents Display, 611
Program Display, 369
Program Input/Output, 498
Program Number Search, 567
Program of Tool Life Data, 108
Program Restart, 430
Program Screen for MDI Operation, 616
Program Section Configuration, 122
Programmable Parameter Entry (G10), 304

Radius Direction Error at Circle Cutting, 721
Range of Command Value, 710
Rapid Traverse, 68
Rapid Traverse Override, 466
Reading Files, 515
Recommended Memory Card, 461
Reference Position, 72
Reference Position (Machine–Specific Position), 15
Reference Position Return, 73
Registering Custom Macro Programs, 289
Remote Buffer, 319
Repetition (WHILE statement), 271
Replacement of Words and Addresses, 579
Replacing Battery for LCD–Mounted Type i Series, 686
Replacing the Battery for Stand–Alone Type i Series, 689
Rigid Tapping, 180
Rotary Axis Roll–Over, 329
Setting and Display Units, 375
Setting and Displaying B–axis Tool Compensation, 654
Setting and Displaying Data, 592
Setting and Displaying the Tool Offset Value, 626
Setting Input/Output–Related Parameters, 521
Setting the Workpiece Coordinate System Shifting Amount, 634
Simple Calculation of Incorrect Thread Length, 716
Simple Call (G65), 275
Simple Synchronization Control, 330
Single Block, 468
Skip Function (G31), 61
Soft Key Configuration, 402
Soft Keys, 384
Specification, 455
Specification Method, 296
Specification number, 459
Specifying a Tool Group in a Machining Program, 112
Specifying the Spindle Speed Value Directly (S5–Digit Command), 95
Specifying the Spindle Speed with A Code, 95
Spindle Orientation, 103
Spindle Positioning, 103
Spindle Positioning Function, 103
Spindle Speed Fluctuation Detection Function (G25, G26), 100
Spindle Speed Function, 94
Stand–Alone Type 61 Full–Key MDI Unit, 379
Stand–Alone Type Small MDI Unit, 377
Stand–Alone Type Standard MDI Unit, 378
Status when Turning Power On, when Clear and when Reset, 722
Stock Removal in Facing (G72), 146
Stock Removal in Turning (G71), 142
Stored Stroke Check, 474
Subprogram (M98, M99), 128
Subprogram call (M198), 457
Subprogram Call Function (M198), 443
Subprogram Call Using an M Code, 283
Subprogram Calling, 310
Subprogram Calls Using a T Code, 284
Supplementary Explanation for Copying, Moving and Merging, 577
System Variables, 256

[S]
Safety Functions, 471
Sample Program, 285
Scheduling Function, 438
Screen Displayed at Power–on, 407
Screen Hardcopy, 680

[Screens Displayed by Function Key](MESSAGE) , 665
[Screens Displayed by Function Key](OFFSET) , 625
[Screens Displayed by Function Key](POS) , 600
[Screens Displayed by Function Key](PROG) (In Memory Mode or MDI Mode), 610
[Screens Displayed by Function Key](PROG) (In the EDIT Mode), 618
[Screens Displayed by Function Key](SYSTEM) , 656
Selecting a Workpiece Coordinate System, 80
Selection of Tool Used for Various Machining – Tool Function, 22
Sequence Number Comparison and Stop, 641
Sequence Number Search, 568
Setting a Workpiece Coordinate System, 78

[T]
T Code for Tool Offset, 186
Tape Code List, 703
Test Operation, 462
Testing a Program, 363
The Second Auxiliary Functions (B Codes), 116
Thread Cutting Cycle (G92), 134
Tool Compensation and Number of Tool Compensation, 246
Tool Compensation Values, Number of Compensation Value, and Entering Values from the Program (G10), 246
Tool Function (T Function), 106
Tool Geometry Offset and Tool Wear Offset, 185
Tool Life Management, 108
Tool Movement Along Workpiece Parts Figure–Interpolation, 12
Tool Movement by Programming – Automatic Operation, 360
Tool Movement in Offset Mode, 211
Tool Movement in Offset Mode Cancel, 224
Tool Movement in Start–up, 209
Tool Movement Range – Stroke, 27
Tool Offset, 185
Tool Path at Corner, 718
Tool Selection, 107
Torque Limit Skip (G31 P99), 64

Turning on the Power, 406

[U]
Unconditional Branch (GOTO Statement), 269

[V]
Variable–Lead Thread Cutting (G34), 57
Variables, 252

[W]
Warning Messages, 401
Word Search, 559
Work Position and Move Command, 199
Workpiece Coordinate System, 78
Workpiece Coordinate System Preset (G92.1), 83
Workpiece Coordinate System Shift, 85

[Y]
Y Axis Offset, 636
<table>
<thead>
<tr>
<th>Edition</th>
<th>Date</th>
<th>Contents</th>
<th>Edition</th>
<th>Date</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Jul., 2001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• No part of this manual may be reproduced in any form.

• All specifications and designs are subject to change without notice.